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Abstract

Flow-generated noise, especially rotorcraft noise has been a serious concern for both

commercial and military applications. A particular important noise source for rotor-

craft is Blade-Vortex-Interaction (BVI) noise, a high amplitude, impulsive sound that

often dominates other rotorcraft noise sources. Usually BVI noise is caused by the

unsteady flow changes around various rotor blades due to interactions with vortices

previously shed by the blades. A promising approach for reducing the BVI noise is

to use on-blade controls, such as suction/blowing, micro-flaps/jets, and smart struc-

tures. Because the design and implementation of such experiments to evaluate such

systems are very expensive, efficient computational tools coupled with optimal con-

trol systems are required to explore the relevant physics and evaluate the feasibility

of using various micro-fluidic devices before committing to hardware.

In this thesis the research is to formulate and implement efficient computational

tools for the development and study of optimal control and design strategies for com-

plex flow and acoustic systems with emphasis on rotorcraft applications, especially

BVI noise control problem. The main purpose of aeroacoustic computations is to

determine the sound intensity and directivity far away from the noise source. How-

ever, the computational cost of using a high-fidelity flow-physics model across the

full domain is usually prohibitive and it might also be less accurate because of the

numerical diffusion and other problems. Taking advantage of the multi-physics and

multi-scale structure of this aeroacoustic problem, we develop a multi-model, multi-

domain (near-field/far-field) method based on a discontinuous Galerkin discretiza-

tion. In this approach the coupling of multi-domains and multi-models is achieved

by weakly enforcing continuity of normal fluxes across a coupling surface. For our

interested aeroacoustics control problem, the adjoint equations that determine the

sensitivity of the cost functional to changes in control are also solved with same ap-

proach by weakly enforcing continuity of normal fluxes across a coupling surface.

Such formulations have been validated extensively for several aeroacoustics state and

control problems.

A multi-model based optimal control framework has been constructed and ap-

plied to our interested BVI noise control problem. This model problem consists of

the interaction of a compressible vortex with Bell AH-1 rotor blade with wall-normal
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velocity used as control on the rotor blade surface. The computational domain is

decomposed into the near-field and far-field. The near-field is obtained by numerical

solution of the Navier–Stokes equations while far away from the noise source, where

the effect of nonlinearities is negligible, the linearized Euler equations are used to

model the acoustic wave propagation. The BVI wave packet is targeted by defining

an objective function that measures the square amplitude of pressure fluctuations in

an observation region, at a time interval encompassing the dominant leading edge

compressibility waves. Our control results show that a 12dB reduction in the ob-

servation region is obtained. Interestingly, the control mechanism focuses on the

observation region and only minimize the sound level in that region at the expense of

other regions. The vortex strength and trajectory get barely changed. However, the

optimal control does alter the interaction of the vortical and potential fields, which

is the source of BVI noise. While this results in a slight increase in drag, there is a

significant reduction in the temporal gradient of lift leading to a reduction in BVI

sound levels.
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Nomenclature

Accents, Superscripts, and Subscripts
()max Maximum value

()rms Root-mean-square value

() Mean flow variables

()′ Disturbance quantity

(x, y, z) Cartesian coordinates

xi Cartesian coordinates

(u, v, w) Velocity components in the Cartesian coordinates

ui Velocity components in the Cartesian coordinates

U Vector of conservative variables

u Vector of primitive variables

u
′ Vector of primitive fluctuation variables

ū Vector of primitive mean flow variables

Q Vector of quasi-conservative variables

Y Vector of primitive variables

Y Vector of primitive mean flow variables

y Vector of primitive fluctuation variables

U∞ The magnitude of the freestream velocity

t Time
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Re Reynolds number

ρ Fluid density

p Pressure

T Fluid temperature

e Internal energy

E Total energy

c Sound speed

k Wavenumber magnitude

cp Specific heat at constant pressure

cv Specific heat at constant volume

τij Stress tensor

Ω Total computational domain

Γ The boundary of the computational domain

Γc The control boundary

Γs The solid wall

Γ∞ The far filed boundary

µ Dynamic viscosity coefficient

R Surface curvature

L Reference length scale
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Abbreviations

CG Conjugate Gradient method

ANS Adjoint Navier-Stokes

DNS Direct Numerical Simulation

LES Large Eddy Simulation

RANS Reynolds Averaged Navier Stokes

LHS Left-Hand-Side

LNS Linearized Navier-Stokes

LEE Linearized Euler equation

NS Navier–Stokes

RHS Right-Hand-Side

TKE Terminal Kinetic Energy

FD Finite Difference

DG Discontinuous Galerkin

DGM Discontinuous Galerkin method

CAA Computational Aeroacoustics

CFL Courant–Friedrichs–Lewy number
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Chapter 1

Introduction

1.1 Flow Control

Flow control is a science at the intersection of several disciplines: fluid dynamics,

control theory, and numerical methods. It aims to achieve a desired objective by

altering the flow characteristics passively or actively. Such ability to actively or

passively manipulate the flow field to effect a desired change is very important; it offers

the great potential to modify the complex flows, which may lead to drag reduction,

lift enhancement and flow induced noise suppression, etc.

Because of our special interest in the noise suppression and control, both passive

and active control strategies can be employed to suppress flow-induced noise. In the

next session, we will review the background and current progress of the aeroacoustics

research and the noise control techniques.

1.2 Aeroacoustics

Generally, noise is undesired sound. It usually denotes audible pressure fluctuations

in the ambient air, but it can also propagate, reflect, refract, scatter and dissipate as

well in liquids and solids. Particularly flow-induced noise (i.e., acoustics generated

by a fluid flow) is our primary concern.

Flow-induced noise hasn’t drawn enough attention until the environment protec-

tion and the several noise regulations from Federal Aviation Agency (FAA) due to

the increasing use of airplanes and helicopters. Since then, much research work has

been carried on to study the mechanisms of the aerodynamic sound and find ways

1
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for the reduction of the noise. Both theoretical and experimental studies using the

flight-test and wind-tunnel test are being conducted to investigate the basic noise

mechanisms. Among many types of noise, aerodynamic noise generated from flu-

ids is especially important, which includes turbine jet noise, impulsive noise due to

unsteady flow around wings and rotors, and broadband noise due to inflow turbu-

lence and boundary layer separated flow, etc. In [41], the field of aerodynamic sound

(sometimes called aeroacoustics) is thought to have evolved around two fundamental

problems, the first is to derive a physically accurate and mathematically rigorous def-

inition of sound, the second is to predict the aeroacoustics and uncover the physical

mechanisms of sound, which is also essential to control or modify them to achieve

noise reduction and comply with noise regulations. Although for the first problem,

the complete acoustics model has not been constructed, numerical simulation with

a proper model has been employed for the acoustics source simulation and model-

ing, resulted from the development of the computational power. Once the sound

source has been identified, the further concern is the acoustic propagation. Both two

define a relatively new field: Computational Aeroacoustics (CAA). [55, 78–80] give

very detailed review and current progress of CAA. Basically, CAA is concerned with

the prediction of the aerodynamic sound source and the propagation of generated

acoustics. In the sound source categories, there are several kinds of problem, one is

related with the turbulence flow (i.e., the turbulence generated noise), such as jet

noise, boundary layer noise and shock/turbulence interaction noise. An accurate tur-

bulence model is usually required for this case as done in many works of Reynolds

Averaged Navier Stokes (RANS) [60], Large Eddy Simulation (LES) [118] or Direct

Numerical Simulation (DNS) [49, 50]. The other general category of source noise is

the impulsive noise generated by the rotating machinery, such as the helicopter rotor

noise, propeller noise, fan noise, etc. For those problems, an Euler/Navier–Stokes or
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even a full potential model [63] is adequate because the turbulence is not so impor-

tant. Once the noise source is predicted, several approaches can be used to describe

acoustics propagation. There are basically four approaches as reviewed in [79–81].

The first, also the obvious strategy, is to extend the computational domain for the

full nonlinear Navier–Stokes equations far enough to encompass the location where the

sound is calculated as done in [41]. It is also called full flow-field Computational Fluid

Dynamics (CFD) in [79]. Such approach is too expensive and has many drawbacks.

It requires tremendous computer storage and time because of the mesh refinement to

resolve the far field acoustics. Furthermore, the dissipation and dispersion properties

of traditional CFD numerical schemes tend to generate the artificial disturbance and

damp the acoustic fluctuations. Both make it impractical to solve the full field Navier–

Stokes equation for the large scale acoustics computation. It is a great challenge to

solve the full field acoustics that requires a delicate numerical operator to avoid the

numerical dissipation and dispersion. For this kind of full field acoustics solver, there

are several specified numerical operators for the acoustics computation. One is the

Dispersion Relation Preserving (DRP) scheme pioneered by Tam and Webb [114],

another is the spectral like high order finite difference scheme by Lele [72]. Because

of its high accuracy, low dispersion, and diffusion property [59], the discontinuous

Galerkin (DG) method has been applied to the aeroacoustics computation. In [45]

the full Euler equations are solved with DG method for the sound radiation from

aircraft engine sources to the far field.

For the aeroacoustics problems, most CAA techniques are based on the domain

split approach, separating the whole domain into two domains, near field with the

nonlinear acoustic effects, and far field with the linear acoustics for the sound prop-

agation. Among those techniques used to describe the sound propagation in the

far field, one is the acoustic analogy, the nonlinear near-field CFD calculation plus
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the application of an integral equation, the breakthrough work by Lighthill [75]. In

the acoustic analogy, the Navier–Stokes equations are rearranged to be in wave-type

form with some terms identified as part of the sound source in the right-hand of the

equation. The far field sound pressure is then obtained by the volume integral of

the domain containing the sound source. Based on the original Lighthill formula,

several kinds of formulation [42, 48, 76, 95, 122] have been proposed and developed,

considering the different sound-flow interactions and other effects. Among those for-

mulas, the most general form is the Ffowcs-Williams Hawkings equation (i.e., FW-H

equation) [122] extended in the case of solid surfaces, which is an exact rearrange-

ment of continuity and momentum equations into the form of an inhomogeneous wave

equation with two surface source terms (monopoles and dipoles) and a volume source

term (quadrupole). All the integrals are evaluated in the retarded time, so a long

record of the time-history of the sound source solution must be kept for the integral.

The challenge is from the volume integral for the quadrupole term, which is ignored

in most of work. [15] gives more details. Instead of evaluating the near-field sound

source numerically, the experimental data can also be used when available.

Besides the traditional acoustic analogy, the other surface-integral based method

for the far field acoustics is the Kirchhoff method, which is thoroughly reviewed in [79]

by Lyrintzis. Kirchhoff method consists of the numerical simulation of the nonlinear

near or middle field sound source with far field sound propagation evaluated with

surface integral around the domain containing all the nonlinear flow effects and the

noise source, where it is assumed that the sound transmission is governed by the simple

wave equation. It has quite a long history with the original idea from Kirchhoff for

the electromagnetic wave as the classical formulation [66]. Morgans [86] derived a

Kirchhoff formula for a moving surface, followed by some extended work by Farassat

and Myers [47] by using the generalized function theory [46]. The biggest advantage
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from Kirchhoff method compared with the FW-H equation, is avoiding the volume

integral of quadrupole, but the tricky part is the location of the Kirchhoff surface,

which can give misleading results and make the far field solution unreliable [16, 17].

For the detailed comparison between those Kirchhoff method and FW-H equations,

[17] gives more details.

Similar to the first approach, but based on the domain and scale decomposition

approach, the much simpler equations, which are often the Linearized Euler Equa-

tions (LEE), are used in the far field instead of solving the full field Navier–Stokes

equations. Such approach is based on the domain (near field/far field) and variable de-

composition (mean and fluctuation) with the very sound physical approximation that

the acoustics propagation is hardly affected by the viscosity and the time-dependent

acoustic perturbation is so small that it can be ignored compared with the convection

velocity of the flow. For the near field, it is solved with a nonlinear solver, which

may require the turbulence modeling depending on the specific physics problem. In

the far field a less expensive linearized Euler is applied which makes the computation

very efficient. The focus becomes how to couple the near field flow simulation and far

field acoustics propagation. One approach is to define proper boundary conditions

between the near field and far field as in the work done by Freund et al. [52], pro-

peller noise prediction by Lim [77] and for the supersonic jet noise by Viswanathan

et al. [120]. Another alternative is to rearrange the terms from the nonlinear field

to the right hand of the acoustic equation as the source. Application of such tech-

niques is given by Viswanathan et al. [119]. A slight modification of such approach

is done by Djambazov et al. [43, 44], where they only consider the source term from

the nonlinear sound source in the continuum equation. In 1997, Freund [51] further

simplified the far field linearized Euler equations with a field of wave equations with

the acoustics source from the temporal derivative of the density from the nonlinear
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sound source, which can be transformed into the traditional acoustic analogy form.

Such an approach has been applied in his work for the jet noise prediction [49].

When the aeroacoustics research is applied to the rotorcraft aeroacoustics from the

helicopters, it becomes extremely complicated due to the combination of the rotation

of the blades and the translation of the helicopter. It may be further complicated

by other conditions as discussed in [84]. The rotorcraft noise generated by the aero-

dynamic interactions includes several kinds of noise source, broadband noise by the

random fluctuations of the forces on the blades, the rotational noise by the rotor

blades exerting a force on the air, the noise from thickness effects created when a

rotor blade passes through and displaces the air, the high speed impulsive noise due

to the shock wave occurring on the blade tips when a rotor blade travels fast enough

and the Blade-Vortex Interaction (BVI) noise. BVI noise is one of the most impor-

tant among the several types of helicopter noise. It is from the unsteady pressure

fluctuations on a rotor blade due to interactions with vortices generated by previous

blades. Figure 1.1 shows the contours of blade surface pressure. It usually happens

when the trailing vortices pass close to the rotor blades and interacts with it in certain

low speed, decent flight paths as in Figure 1.2. When the trailing vortex is nearly

parallel to the blade, which is called parallel BVI, as in Figure 1.3, the BVI noise is

the strongest because the whole blades along its entire span interacts with the vortex.

Such phenomenon also provides a very good physics basis to simplify it as a two di-

mensional problem. BVI noise is loud, impulsive, tends to dominate other sources and

propagates out-of-plane, usually forward and down at about 30 to 40 degree angle,

which makes it more audible to the observer on the grounds and causes significant

effects on both military detection and community annoyance when it occurs.

Extensive research, both experimental [14, 73, 83, 104] and computational [2, 18,

53, 68, 82, 112, 121,123,124] has been performed to investigate the aerodynamics and
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the aeroacoustics mechanisms of the BVI noise. These studies have improved the

basic physical understanding of the mechanisms generating rotor-blade interaction

noise and also of controlling techniques. In particular, the experimental studies have

shown that the intensity of BVI noise depends on many factors: the rotor blade tip

shape and velocity, vortex strength and structure, the distance between the vortex

and the subsequent rotor and the rotor wakes. Based on these research and studies,

many methods have been proposed to control the noise, including flight path control,

passive leading-edge suction, passive blade design and active rotor control. [125, 126]

gives excellent review for the active control of rotorcraft noise. Active rotor control can

take several forms including Higher-harmonic pitch control (HHC), individual blade

control (IBC) and on-blade control technologies using smart structure/materials.

In general, the control of a complex physical process like BVI requires a thorough

understanding of the underlying physics and mechanisms. Besides the extensive ex-

perimental work, a lot of numerical study using the computational aeroacoustics have

been focused on predicting BVI noise with great success. However, very little work

has been conducted for the control of BVI noise except some experiment work using

the passive and active control design [7, 71, 103, 125, 126]. Due to the complexity

of the BVI acoustics, prior research on the noise control has largely been through

trial and error applications of various control strategies based on physical intuition.

Such an approach is relatively useful to devise the control strategies. Considering the

importance of the impact of BVI noise from the helicopter and other rotorcraft on

the environment and military application and the complexity of BVI noise physics,

it is very important to combine the efficient numerical method for the aeroacoustics

simulation with the optimal control theory to devise the controls that are aware of

the full physics of the BVI generation process. Given that, it will enhance our un-

derstanding of the fundamental aeroacoustic noise generation while enabling us to
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evaluate the relevant physics about the rotorcraft noise. Such approach relies on the

fidelity of the mathematical model of the flow physics, the efficiency and accuracy of

the numerical method and the optimal control algorithm. With this approach we will

be able to develop and evaluate different control strategies for noise reduction and

guide the design of control strategies for this complex problem. It was first applied

by Collis et al. [33] for a model BVI problem with some prior work for optimal con-

trol of flows governed by the unsteady compressible Navier–Stokes equations [36–38].

However, considering the complexity of the coupled physics inherent in BVI noise,

the model vortex cylinder interaction problem in [33] can not represent the realistic

problem with the complex rotor geometries and multi-structure physics. An efficient

and high accuracy numerical method definitely needs to be developed to investigate

the feasibility of using the wall-normal suction/blowing actuation for controlling the

BVI noise, which should be able to deal with the complex geometries and take into

account the flow physics of near-field and far-field.

1.3 Motivation and Objectives

The coupling of efficient and accurate computational fluid dynamics analysis with

optimal control theory has the potential to advance active flow-control for complex

flows including flows involving aeroacoustic noise generation, especially a particularly

important noise source for rotorcraft–BVI noise. Recent advances in numerical al-

gorithms and computer performance have enabled the computational simulation of

flow induced noise. However, to better understand the relevant physics and devise

control necessary to minimize the noise, coupling the optimal control theory with the

high-fidelity computational fluid dynamics simulation to devise the control is very

necessary.

The overall objective of the present research is two fold. The first is to develop
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efficient physical model and numerical methods which can be used to efficiently and

accurately compute the near field hydrodynamics (i.e., sound source) and the far field

acoustics. It will be very useful to study the relevant flow physics of the rotorcraft

acoustics and to exploit the multi-physics and multi-scale structure of this problem.

The second objective is to couple the optimal control theory with this efficient nu-

merical method to investigate the feasibility of using wall–normal suction/blowing

actuation for controlling this Blade-Vortex Interaction (BVI) phenomenon.

The main purpose of aeroacoustic computations is to determine the sound in-

tensity and directivity far away from the noise source. The computational cost of

using a high-fidelity model of flow physics across such large domains is usually pro-

hibitive and most researchers resort to multi–physics domain decomposition methods.

The near field is presented by a numerical solution of the Navier–Stokes equations,

while far away from the noise source the effect of nonlinearities is negligible and

the linearized Euler equation or isentropic wave equation can be used to propagate

acoustic waves. In this thesis, we construct and implement a multi-model (linearized

Euler/Navier-Stokes), multi-domain(near field/far field) method for optimal control

of aeroacoustics, based on a discontinuous Galerkin discretization. With such meth-

ods, we are interested in developing an optimal control framework for aeroacoustic

applications that may help to identify novel strategies for controlling BVI noise in a

systematic manner. Derivation of the optimality conditions for multi–domain systems

obviously requires an in–depth knowledge of the optimal control formulations of each

subsystem. In short, our research focus is the formulation and implementation of

multi-model simulation for optimal control of aeroacoustics with application to BVI

noise control.
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1.4 Accomplishments and Overview

In this section we review the progress we have made in accordance with the objectives

set out in the last section. The accomplishments of this research include:

1. A numerical scheme for the two dimensional linearized Euler and isentropic

Wave equations based on the discontinuous Galerkin formulation (DG) has

been developed. It has very low numerical dissipation and dispersion which

is critical for the aeroacoustics simulation. To make the computation efficient,

it has been reformulated into the quasi-conservative flux form for the discontin-

uous Galerkin discretizations, which avoids the source term from the mean flow

most linearized solver has. It has been validated in several classical acoustics

benchmark problems.

2. A general multi-domain/model solver has been developed and implemented

based on the discontinuous Galerkin discretizations. In this approach, the cou-

pling of multi-domains (near-field and far-field) and multi-models is achieved by

weakly enforcing continuity of normal fluxes across a coupling surface. It has

been built for Navier–Stokes (NS)/linearized Euler (LEE), Navier–Stokes/Wave,

Euler/linearized Euler (LEE) and Euler/Wave coupling inside a single-grid

framework, which is very efficient for the aeroacoustics computation.

3. A suite of model acoustics problems have been presented for the demonstration

for our multi-model solver. These problems include: planar acoustics propaga-

tion, acoustics scattering from a circular cylinder, an inviscid vortex interacting

with a circular cylinder, and viscous Bell AH-1 rotor blade vortex interaction.

Results from each of these problems are in excellent agreement with the exact

solutions or those from the direct solvers.
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4. A general continuous adjoint gradient based flow control framework has been

developed using discontinuous Galerkin discretizations. It can apply to dis-

tributed/boundary (Dirichlet/Neumann/Robin) control for linear Advection–

Diffusion equations and nonlinear Burger equations, inviscid boundary con-

trol for Euler equations based on the linear characteristic relation, and viscous

boundary control for Navier–Stokes equations. Several model control problems

have been solved for the validation purpose. The first problem is optimal control

of the acoustic pulse reflecting, which is to validate the non-reflecting behavior

of the optimal transpiration control. The second is a vortex rebound model

problem with wall normal suction and blowing used to minimize the kinetic

energy at the final time. The third is the suppression of vortex shedding in the

wake of a circular cylinder with boundary blowing/suction around the cylin-

der. All those results give excellent optimization results and have very good

agreement with the work in the relevant literatures.

5. A multi-model solver for optimal control has been developed based on a non-

overlapping decomposition of the spatial domain and model and the introduc-

tion of the transmission conditions between the subdomains and submodels

which couple the state and adjoint solutions in the optimality system. Both the

state and adjoint coupling of the multi-models are achieved by weakly enforcing

continuity of normal fluxes across a coupling surface. This novel multi-model

optimization solver has been successfully applied to noise control of realistic

Blade-Vortex-Interaction (BVI) problem, where a vortex interacted with a Bell

AH1 rotor blade in a freestream. Through optimization, the sound level in the

observation region is reduced about 12dB. To our best knowledge, it is the first

time to study the optimal control of realistic BVI problem numerically and with

multi-domain/model approach.
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We begin in Chapter 2 with a summary of the governing equations, including formu-

lation of Navier–Stokes and Euler equations, the derivation of linearized Euler and

isentropic wave equations. In Chapter 3, details are given for the numerical discretiza-

tions for all the governing equations based on the discontinuous Galerkin method.

In this chapter, the multi-domain/model formulation has also been constructed for

the general model coupling, including the inviscid and viscous flux coupling. The

gradient-based control equations system using continuous adjoint derivation are given

in Chapter 4. Optimal control formulations for the multi-model system are also shown

in Chapter 4. Extensive validation of our numerical discretizations is performed in

Chapter 5 for some classical acoustics problems and several multi-model test problems

are also presented in this chapter. In Chapter 6, three boundary control problems

are presented for the validation of our control solver, several issues are investigated.

The main focus of our research is presented in Chapter 7 where an extensive study

for the BVI noise control with on-blade blowing/suction using our multi-model for-

mulation is given. Finally, the results of this thesis are summarized in Chapter 8 with

conclusions and directions for future work.
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Figure 1.1: Blade surface pressure from the review [125]).

Figure 1.2: Aerodynamics of blade-vortex interactions from the review [125]
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Figure 1.3: Schematic of parallel BVI on a helicopter from [84]



Chapter 2

Governing Equations

2.1 Nondimensionalization

Denote the reference length, velocity, density, temperature, sound speed, the coeffi-

cients of thermal diffusivity and viscosity by Lr, Ur, ρr, Tr, cr, κr and µr respectively.

Here the reference state is usually the state of freestream flow.

vi =
vi

∗

Ur
ρ =

ρ∗

ρr
M r =

Ur

cr
T =

T ∗M 2
r

Tr

p =
p∗

ρrUr
2 τ =

τ ∗Lr

µrUr
λ =

λr

µr
κ =

κ∗

κr

where the variables with the asterisk sign are dimensional quantities. With this choice

of the reference variables, the equation of state becomes

p =
ρT

γ

and the total energy per unit mass E is

E =
T

γ(γ − 1)
+

1
2
vTv

The constitutive equation becomes

τ = (
Lr

µrUr

)τ ∗ = µ(∇v + ∇vT ) + λ(∇ · v)I

15
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For the nondimensionalization for the heat diffusion term,

(
Lr

ρrUr
3 )(κ∗T ∗

,x∗),x∗

= (
µr

ρrUrLr
)

κ

Pr(γ − 1)
T,xx

=
1

Re
κ

Pr(γ − 1)
T,xx

where Pr = µ∗Cp
∗

κ∗ and Re = ρrUrLr

µr
. For the state discretizations, actually the

following form is used, considering internal energy per unit e∗ = Cv
∗T ∗ or e∗ = Cp

∗

γ
T ∗

(
Lr

ρrUr
3 )(κ∗T ∗

,x∗),x∗

= (
Lr

ρrUr
3 )(κ∗e∗

,x∗),x∗

= (
Lr

ρrUr
3 )

Ur
2

Lr
2
γκ∗

Cp
∗ e,xx

= (
µr

ρrUrLr
)

µ

Pr
e,xx

=
1

Re
µ

Pr
e,xx

Define µ = 1
Re µ, we get

(
Lr

ρrUr
3 )(κ∗T ∗

x∗)x∗ =
µ

Pr
e,xx

In the final form for the heat diffusion term and the viscous stress term, the Re

is integrated into µ implicitly.

2.2 Euler

The spatial domain occupied by the fluid is Ω = {x ∈ IR2 : } and Γ denotes its

spatial boundary.
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Let

u = (ρ, u1, u2, T )T

denote the primitive flow variables, where ρ(t,x) is the density; ui(t,x) denotes the

velocity in the xi-direction, i = 1, 2; v = (u1, u2)T ; and T (t,x) denotes the tempera-

ture. The pressure p and the total energy per unit mass E are given by

p =
ρT

γ
, E =

T

γ(γ − 1)
+

1
2
vTv,

respectively, where γ is the ratio of specific heats. We write the conserved variables

ρ, ρu1, ρu2, ρE as functions of the primitive variables,

U(u) = (ρ, ρu1, ρu2, ρE)T ,

and we define the inviscid flux vectors as

F1(u) =

⎛

⎜
⎜
⎜
⎜
⎝

ρu1

ρu2
1 + p

ρu2u1

(ρE + p)u1

⎞

⎟
⎟
⎟
⎟
⎠

, F2(u) =

⎛

⎜
⎜
⎜
⎜
⎝

ρu2

ρu1u2

ρu2
2 + p

(ρE + p)u2

⎞

⎟
⎟
⎟
⎟
⎠

,

The two-dimensional compressible Euler equations for the time interval [t0, tf ] can

now be written as

U(u),t +
2∑

i=1

(Fi(u),xi
) = 0 in (t0, tf) × Ω (2.1)

with boundary conditions

B(u) = 0 on (t0, tf) × Γ (2.2)

and initial conditions

u(t0,x) = u0(x) in Ω. (2.3)
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Here, n is the unit outward normal.

2.3 Navier-Stokes

Considering the additional viscous flux term Fv, we get the compressible Navier–

Stokes equations in strong form

U(u),t +
2∑

i=1

(Fi(u),xi
− Fv

i (u, ∇u),xi
) = 0 in (t0, tf) × Ω (2.4)

with boundary condition (2.2) and initial condition (2.3).

We define the viscous flux Fv
i

Fv
i (u, ∇u) =

⎛

⎜
⎜
⎜
⎜
⎝

0

τ1i

τ2i

τ1iu1 + τ2iu2 + µ

Pr e,xi

⎞

⎟
⎟
⎟
⎟
⎠

,

i = 1, 2, where τij are the elements of the stress tensor τ = µ(∇v+∇vT )+λ(∇·v)I.

Here µ, λ are first and second coefficients of viscosity, κ is the thermal conductiv-

ity, Pr is the reference Prandtl number. For the problems presented in this thesis,

constant Prandtl number and fluid properties (viscosities and thermal conductiv-

ity) are assumed along with Stokes hypothesis for the second coefficient of viscosity,

λ = −2µ/3.

2.4 Linearized Euler

For the linearized Euler, based on the linear perturbation theory we assume that

u = ū + u
′ where ū is mean flow variables and u

′ is flow fluctuation variables, so

U(ū + u
′
),t +

∑

i

(
Fi(ū + u

′
),xi

)
= 0 in (t0, tf) × Ω (2.5)
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Expand the terms in (2.5),

U(ū + u
′
),t = U(ū),t + (U(ū),ūu

′
),t + ...

Fi(ū + u
′
),xi

= Fi(ū),xi
+ (Fi(ū),ūu

′
),xi

+ ...

Assume the steady mean flow ū, so

(U(ū),ū)t = 0 (U(ū),ūu
′
),t = U,ūu

′
,t

If ignoring the high order terms in (2.5), we get

U(ū),t +
∑

i

Fi(ū),xi
+ U,ūu

′
,t +

∑

i

(Fi(ū),ūu
′
),xi

= 0 in (t0, tf) × Ω (2.6)

Considering the mean flow,

U(ū),t +
∑

i

Fi(ū),xi
= 0 in (t0, tf) × Ω (2.7)

Deducting (2.7) from (2.6), we get

U,ūu
′
,t +

∑

i

(Fi(ū),ūu
′
),xi

= 0 in (t0, tf ) × Ω (2.8)

To transform (2.8) in the conservative form, we have the following two formulations

based on the conservative and primitive variable, respectively.

2.4.1 Formulation of the Conservative Variable

Define

M̄ =
∂U
∂u

|ū (2.9)
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, the equation (2.8) becomes

(M̄u
′
),t +

∑

i

(
∂Fi

∂u
|ū u

′
)

,xi

= 0 (2.10)

Let

Q = M̄u
′

∂Fi

∂u
|ū u

′
=

∂Fi

∂u
|ū M̄−1M̄u

′
=

∂Fi

∂u
|ū ∂u

∂U

∣
∣
U(ū) M̄u

′
=

∂Fi

∂U

∣
∣
U(ū) M̄u

′

we get

Q,t +
∑

i

(
∂Fi

∂U

∣
∣
U(ū) Q

)

,xi

= 0 (2.11)

Define

Āi =
∂Fi

∂U

∣
∣
U(ū)

we obtain

Q,t +
∑

i

(
ĀiQ

)
,xi

= 0 (2.12)

where our quasi-conservative variable

Q = M̄u
′

and u
′ is got from

u
′
= M̄−1Q

For two dimensional problem, the Āi is shown in the following appendix.

2.4.2 Formulation of the Primitive Variable

Considering the steady mean flow for (2.9)

M̄,t = 0
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The equation (2.10) becomes

u
′
,t +

∑

i

M̄−1
(

∂Fi

∂U

∣
∣
U(ū) u

′
)

,xi

= 0

u
′
,t +

∑

i

(

M̄−1 ∂Fi

∂U

∣
∣
U(ū) u

′
)

,xi

=
∑

i

(
M̄−1)

,xi

∂Fi

∂U

∣
∣
U(ū) u

′

Introducing

Gi = M̄−1 ∂Fi

∂U

∣
∣
U(ū)

S =
∑

i

(M̄−1),xi

∂Fi

∂U

∣
∣
U(ū) u

′

we get the primitive-variable based formulation

u
′
,t +

∑

i

(Giu
′
),xi

= S (2.13)

where G and S are defined in the appendix.

2.5 Wave Equation

For a simplified model under isentropic condition, the energy equation is replaced by

the isentropic relation

p

ργ
=

p0

ργ
0

= constant (2.14)

Considering the definition of sound speed

c2 =
∂p

∂ρ
|s
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and the Taylor expansion based on the mean flow ū

dp ≈ p′ dρ ≈ ρ′ and c2 = c2
0 + O(ε)

We obtain

p′ = c2
0ρ

′ (2.15)

where c0 is the local sound speed from mean flow ū.

Define

u
′
= (ρ′, u1

′, u2
′)T

We get formulations of quasi-conservative Q and primitive variable u
′ under the

isentropic condition, which are very similar to (2.12) and (2.13) as

Q,t +
∑

i

(
ĀiQ

)
,xi

= 0 (2.16)

and

u
′
,t +

∑

i

(
Giu

′
)

,xi

= S (2.17)

where Q, Ā and G are defined in the appendix.
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Numerical Discretization

Accurate and efficient prediction of flow fluctuations representing sound is the goal of

computational aeroacoustics, which is only based on the fundamental physical prin-

ciples. Besides traditional acoustics analogy, Kirchhoff method, to name a few, quite

a lot of work has focused on the improvements to traditional finite difference meth-

ods [72,113,114] to increase the accuracy and to implement the specialized boundary

conditions. However, these methods have difficulty with the application to highly

complex geometries and the spatial operators are not applicable for some critical flow

phenomenon(i.e., shocks). Because of our special interest in the application to opti-

mal control of the aeroacoustics problem, it requires the computational solver with

high accuracy, low dissipation and dispersion for the aeroacoustics simulation and its

optimal control. From those studies [5, 6, 59, 99], it indicates that, compared with

other numerical methods, discontinuous Galerkin method offers clear advantages in

terms of high accuracy, spectrally small phase and dissipation errors when applied

to acoustics problems as shown in [13, 45, 67, 100, 111]. Kopriva et al. [13, 67] also

shows that discontinuous Galerkin method is very efficient for the aeroacoustics sim-

ulation, waves propagates over a large number of wavelengths with a minimal number

of points per wavelength. Considering the efficiency and accuracy, a discontinuous

Galerkin method is chosen to be applied for our state simulation and its optimal

control.

23
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3.1 Discontinuous Galerkin Method

Discontinuous Galerkin method can be thought of as a hybrid of finite-volume and

finite-element methods that has a number of potential advantages including: high-

order accuracy on unstructured meshes, local hp-refinement, weak imposition of

boundary conditions, local conservation, and orthogonal hierarchical bases that sup-

port multiscale and multiphysics modeling. For a recent update on the status of

discontinuous Galerkin, the interested reader can refer to [25].

3.2 Weak Formulation

As our typical case, we begin with a presentation of the DG method applied to

the compressible Navier–Stokes equations that follows a similar discussion in Ref.

[30, 31, 38]. For the mathematic details, they can be referred to Refs. [3, 24]. For the

inviscid Euler equations, which is only subset of Navier–Stokes equations, the whole

formulation is almost same except without viscous flux and difference in the boundary

conditions. The same is for other linear equations. Most of the following formulation

and implementation of DG discretizations for compressible Navier–Stokes equations

basically follows Collis [31, 38].

3.2.1 Navier–Stokes

Consider the compressible Navier–Stokes equations in strong form

U,t + Fi,i − Fv
i,i = S in Ω, (3.1a)

U(x, 0) = U0(x) at t = 0, (3.1b)

where U = {ρ, ρu1, ρu2, ρE}T is the vector of conserved variables for our interested

two dimensional problem. Regarding other parameters, more details are given in §2.3.
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The fixed spatial domain for the problem is denoted by Ω, which is divided into

a collection of elements in finite element formulations, with boundary ∂Ω.

Ω̄ =
N⋃

e=1

Ω̄e and Ωe ∩ Ωf = ∅ for e �= f . (3.2)

Consider a single subdomain Ωe, we introduce the weighting function W , which

is continuous in Ωe, for the strong form of the compressible Navier–Stokes equations

(3.1a), and integrate the flux terms by parts

∫

Ωe

(
W TU,t + W T

,i(F
v
i − Fi)

)
dx +

∫

∂Ωe

W T (Fn − Fv
n) ds

=
∫

Ωe

W TS ds (3.3)

where Fn = Fini and Fv
n = Fv

i ni. If the solution was assumed to be continuous and

this equation was summed over all the elements, then all the flux terms would tele-

scope to the boundary ∂Ω and we would obtain the standard continuous Galerkin form

of the compressible Navier–Stokes equations. However, in discontinuous Galerkin, one

instead allows the solution and weighting functions to be discontinuous across element

interfaces (see Figure 3.1) and the solutions on each element are coupled using ap-

propriate numerical fluxes for both the inviscid flux Fn(U) → F̂n(U−,U+) and the

viscous flux, Fv
i (U, ∇U) → F̂v

i (U−, ∇U−,U+, ∇U+).

We discretize the problem based on the single subdomain Ωe in the element level

and assume each subdomain Ωe as an element with a Lipschitz boundary ∂Ω. Consid-

ering the locality of discontinuous Galerkin method, we rewrite the above form based

on the element level Ωe. We denote the boundary of the domain Ω as ∂Ω = ΓD ∪ ΓN

where ΓD is the portion of the boundary where Dirichlet conditions are specified and

ΓN is the portion of the boundary where Neumann conditions are set. The element
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boundary is denoted as Γ = {ΓD, ΓN , Γ0} where Γ0 are the inter-element boundaries.

Let Ω1 and Ω2 be two adjacent elements; let Γ12 = ∂Ω1 ∩ ∂Ω2; let n(1) and n(2) be

the corresponding outward unit normal vectors at that point, and let U(e) and F(e)
i

be the trace of a state vector U and flux vectors Fi, respectively, on Γ12 from the

interior of sub-domain Ωe. Then, we define the average 〈 · 〉 and jump [·] operators

on Γ12 as

[Uni] = U(1)n
(1)
i + U(2)n

(2)
i , [Fn] = F(1)

i n
(1)
i + F(2)

i n
(2)
i ,

〈U〉 =
1
2
(
U(1) + U(2)) , 〈Fi〉 =

1
2

(
F(1)

i + F(2)
i

)
,

where Fn = Fini.

With this notation, summing over all elements for (3.3), the primal formulation

B(W ,U) for discontinuous Galerkin applied to the Navier–Stokes equations (3.1a) is

BDG(W ,U) =
∑

Ωe

∫

Ωe

(
W TU,t + W T

,i(F
v
i − Fi)

)
dx

−
∫

Γ

( [
W T ni

] 〈F̂v
i − F̂i〉 − 〈(DiW )T 〉

[
(Û − U)ni

] )
ds

−
∫

Γ0

(
〈W T 〉

[
F̂v

n − F̂n

]
− [(DnW )T

] 〈(Û − U)ni〉
)

ds, (3.4)

where

Fn(U) = Fi(U)ni,

Fv
n(U) = Fv

i (U)ni = DnU.

Quantities with a hat ·̂ in (3.4) are numerical fluxes that must be appropriately

defined. More details can be seen in [3, 24]

Similar to the primary form (3.4), we can also get the following by introducing
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numerical fluxes and summing over all elements yields

N∑

e=1

∫

∂Ωe

W T
(
F̂n(U−,U+) − F̂v

n(U−, ∇U−,U+, ∇U+)
)

ds +

N∑

e=1

∫

Ωe

(
W TU,t + W T

,i(F
v
i − Fi)

)
dx =

N∑

e=1

∫

Ωe

W TS ds (3.5)

where the U+ and U− states are defined in Figure 3.1. For an element edge on the

physical boundary ∂Ω, U+ = Ubc. Likewise, for inter-element boundaries, U+ comes

from the neighboring element. Thus, all interface and boundary conditions are set

through the numerical fluxes.

A simple Lax–Friedrichs flux is chosen for the inviscid flux

F̂n(U−,U+) =
1
2
(
Fn(U−) + Fn(U+) + λm

(
U− − U+)) (3.6)

where λm is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian

An = ∂Fn/∂U.

For the numerical viscous flux, we use the method of [8]. First, a “jump savvy”

gradient of the state, σ ∼ ∇U is computed by solving

N∑

e=1

∫

Ωe

V T σj dx = −
N∑

e=1

∫

Ωe

V T
,jU dx +

N∑

e=1

∫

∂Ωe

V T Ûnj ds (3.7)

∀V ∈ V(Ph) and for j from 1 to d, where

Û =
1
2
(
U− + U+) . (3.8)

The Bassi–Rebay viscous flux is then computed using

F̂v
n(U−, σ−,U+, σ+) =

1
2
(
Fv

n(U−, σ−) + Fv
n(U+, σ+)

)
. (3.9)
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For other numerical flux formulations, [4,24] gives more details and extensive discus-

sion.

Boundary Conditions

In setting boundary conditions weakly through the numerical fluxes, one must con-

struct a state, Ubc, that enforces the appropriate boundary conditions, and [5] pro-

vides a discussion of the important issues involved in selected Ubc. For the Navier–

Stokes calculations reported here, we use the following approach. At far-field bound-

aries Ubc is set to freestream values. At isothermal wall boundaries, we evaluate

Ubc separately for the convective and viscous fluxes. Let q1 = (u−ny − v−nx)ny and

q2 = (v−nx −u−ny)nx then the reconstructed state at a wall for the convective flux is

Ubc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ−

ρ− q1

ρ− q2

ρ−e− + 0.5ρ−(q2
1 + q2

2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3.10)

This state enforces the no-penetration condition which is appropriate for both inviscid

and viscous calculations. For the viscous flux, the no-slip condition is enforced using

Ubc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ−

0

0

ρ−Tw/(γ(γ − 1))

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

(3.11)

where Tw is the prescribed wall temperature, γ is the ratio of specific heats.

3.2.2 Euler

As the subset of viscous Navier–Stokes equations, the discretizations of Euler equa-

tions are very similar to (3.3) as
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∫

Ωe

(
W TU,t + W T

,iFi

)
dx +

∫

∂Ωe

W TFn ds =
∫

Ωe

W T S ds (3.12)

Introducing numerical fluxes and summing over all elements yields the similar

formulation for Euler equations (3.12)

N∑

e=1

∫

∂Ωe

W T F̂n(U−,U+) ds +
N∑

e=1

∫

Ωe

(
W TU,t − W T

,iFi

)
dx =

N∑

e=1

∫

Ωe

W TS ds

(3.13)

All interface and boundary conditions are set through the numerical fluxes. We also

use a Lax–Friedrichs flux (3.6) for the numerical inviscid flux.

Boundary Implementation

Atkins [5] gives very good discussion for the boundary condition implementation

for the inviscid calculation in DG, inflow/outflow and wall boundary. At far-field

boundaries Ubc is set to freestream values. At wall boundaries, we evaluate Ubc for

the convective fluxes. Let q1 = (u−ny − v−nx)ny and q2 = (v−nx − u−ny)nx then the

reconstructed state at a wall for the convective flux is

Ubc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ−

ρ− q1

ρ− q2

ρ−E− − 0.5ρ−(u−2 + v−2) + 0.5ρ−(q2
1 + q2

2)

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3.14)

3.2.3 Linearized Euler Equation (LEE)

Consider the general form of linearized Euler equations, it can be expressed by

Q(u
′
),t +

2∑

i=1

(
Fi(u

′
),xi

)
= S in (t0, tf) × Ω (3.15)

where S is the source term, zero for the conservative form (2.12), nonzero for
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the primitive form (2.13) which is from the mean flow and defined in the appendix.

Because of the similar formulation as (2.1), their formulations can be easily obtained.

The major difference is the definition of the fluxes F and the source S.

Conservative Form

For the conservative formulation (2.12), its weak formulation is

∫

Ωe

(
W T Q,t − W T

,iĀiQ
)

dx +
∫

∂Ωe

W T ĀiniQ ds = 0 (3.16)

Introducing numerical fluxes and summing over all elements yields the similar

formulation for (3.16)

N∑

e=1

∫

∂Ωe

W T ̂̄AnQ(u
′−

, u
′+

) ds +
N∑

e=1

∫

Ωe

(
W T Q,t − W T

,iĀiQ)
)

dx =
N∑

e=1

∫

Ωe

W TS ds

(3.17)

All interface and boundary conditions are set through the numerical fluxes. We also

use a Lax–Friedrichs flux (3.6) for the numerical inviscid flux, where it is defined as

̂̄AnQ(u
′ −

, u
′+

) =
1
2

(
ĀnQ(u

′ −
) + ĀnQ(u

′+
) + λm

(
Q− − Q+)

)
(3.18)

where λm is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian

Ān = ∂Fn/∂U from mean flow ū.

For the boundary condition implementation for the linear calculation in DG, far

field (inflow/outflow) and wall boundary, we always set the boundary condition for u
′

first, then form the boundary condition for Q by Q = M̄u
′ . At far-field boundaries

u
′ is usually set to zero unless there is inflow disturbance. At wall boundaries,

we evaluate Qbc for the convective fluxes. Let q1 = (u′−ny − v′−nx)ny and q2 =
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(v′−nx − u′−ny)nx then the reconstructed u
′ at a wall is

u
′
bc =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

ρ′−

q1

q2

T ′−

⎫
⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎭

. (3.19)

Primitive Form

For the primitive formulation (2.13), its weak formulation is

∫

Ωe

(
W T u

′
,t + W T

,iGiu
′
)

dx +
∫

∂Ωe

W TGiniu
′
ds =

∫

Ωe

W TS ds (3.20)

Introducing numerical fluxes and summing over all elements yields the similar

formulation for (3.20)

N∑

e=1

∫

∂Ωe

W T ̂Gnu
′
(u

′−
, u

′+
) ds+

N∑

e=1

∫

Ωe

(
W T u

′
,t − W T

,iGiu
′
)
)

dx =
N∑

e=1

∫

Ωe

W TS ds

(3.21)

All interface and boundary conditions are set through the numerical fluxes. The

implementation of the boundary conditions is very similar to that of conservative

formulation, but for u
′ directly.

3.2.4 Wave

In a similar manner, we solve the isentropic wave equation in the same formulation

of linearized Euler.

The weak formulations for its conservative and primitive form are

∫

Ωe

(
W T Q,t + W T

,iĀiQ
)

dx +
∫

∂Ωe

W T ĀiniQ ds = 0 (3.22)
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∫

Ωe

(
W T u

′
,t + W T

,iGiu
′
)

dx +
∫

∂Ωe

W TGiniu
′
ds =

∫

Ωe

W TS ds (3.23)

The boundary implementation of (3.22) and (3.23) is very similar to that of (3.16)

and (3.20), respectively.

3.2.5 Remarks

Considering the similarity of (3.3),(3.12), (3.15) and (3.22), we are able to solve

those problems in a unified framework, which provides us great convenience for the

following multi-model simulation to build on the single-grid framework and element

level modeling.

3.3 Multi-domain/Multi-model simulations

The goal of multi-domain/model simulation is to reduce the overall time and mem-

ory required to simulate the flow by using the locally selected cheaper and more

computational efficient physical models without sacrificing the global fidelity of the

simulation.

As mentioned in §3.1, one of the great advantages from DG is the local conserva-

tion that supports the multi-physics modeling. In this section, we present a multi-

domain multi-model formulation for the state simulation and later optimal control

computation using a discontinuous Galerkin formulation for its flexility, locality and

high accuracy. In this approach, the coupling of multi-domain (near field and far

field) and multi-model is achieved by weakly enforcing continuity of normal fluxes

across a coupling surface.
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3.3.1 Motivation

Compressible fluid flow simulations can be modeled with different physics equations.

The simplest model is the full potential equation when inviscid, irrotatioanl and

isentropic flows is assumed. For the inviscid compressible flows, usually the Euler

equations are used to describe the behavior of the inviscid flows. To include the

viscous effects needed for accurate modeling of boundary layer, the Navier–Stokes

equations is the choice, although it is very expensive because of high resolution re-

quired in the viscous regions. Furthermore, for high Reynolds number flows, turbu-

lence model needs to be used to get accurate results. In the linear case, for example,

the acoustics propagation and receptivity problem, the linearized version of Euler

or Navier–Stokes equations are applied. Due to the tremendous computational time

needed for the numerical solution of the complex flows, multi-domain/model meth-

ods are usually favored, which usually decompose the flow field domain into multiple

zones characterized by different physical properties of the flow, to reduce the memory

requirement and to improve the accuracy of the solution. It is also called the het-

erogeneous domain decomposition method in [98], which must include the physically

and mathematically justified transmission conditions at the artificial interface to get

quite accurate approximate solution. For the mathematical description of coupling

heterogeneous models for the compressible flows, more details are given in [98].

In fact, there is long history of using such multi-model approach for the computa-

tional efficiency issue. Boundary layer coupling or thin layer Navier–Stokes coupling

have been widely used, although such approaches do not include all the physics re-

quired for the complex flows. For the transonic flows, the multi-model approach is

applied in [10, 102] for the three-dimensional rotor flows in forward flight and shows

that the computational cost can be reduced by a factor of two for a Navier–Stokes/full

potential coupling. Such efficiency is justified by the fact that a larger percent of
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computational domain is in the full potential region, resulted from its cheap cost.

The overall solution strategy is solving the different equations alternatively in each

region through the overlapping domain decomposition, similar to a sub-domain iter-

ative method. Contrary to the sub-domain iterative approach, Cai [91,92] developed

multi-model, Euler/full potential coupling for the steady flow computation of three

dimensional transonic flow, using the explicit and implicit approach based on the

general finite volume. The coupled system is solved simultaneously. A finite volume

based conservative interpolation is used for the coupling of the full potential equa-

tion and the Euler equation so that the flux will remain conservative at the discrete

level. There is also some other work using the heterogeneous domain decomposition.

Coclici et al. [27] have used coupling of Navier–Stokes and linearized Euler equations

for steady viscous two-dimensional flow around airfoil base in an iterative manner by

constructing the suitable artificial boundary conditions at the coupling surface. They

also considered the formal asymptotic expansions to construct appropriate boundary

layer corrections of the coupled problem modeling the viscous-inviscid interaction us-

ing one dimensional analysis in [28]. Beyond it, Coclici extended their work for the

complex compressible magneto-plasma flow using the heterogeneous domain decom-

position [26].

Computational Aeroacoustics implies the direct simulation of acoustic fields gen-

erated by flows and of the interaction of acoustic fields with flows. Due to the

multi-scale/physics nature of near-field fluid flow and far-field acoustics field, the

near-field fluid flow is characterized by small spatial fluid structures with slow prop-

agating convective velocity, such as small vortices in a turbulent flow, the far-field

acoustics is small amplitude fluctuations with long wavelength and fast propagating

sound speed. As reviewed in §1.2, besides the traditional direct acoustics simulation,
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the more extensively used is the zone approach (near-field sound source and far-

field acoustics) after taking advantage of the multiple scale nature of aeroacoustics

phenomena. Such zone approach may be handled by acoustics analogy [75] and its

derivative [42,48,76,95,122], Kirchhoff method [79] or the Euler equations which may

very often be the linearized Euler equation [43, 44, 51, 120]. Among those methods,

nonlinear near-field CFD calculation plus the far-field linearized Euler solver seems

to give better insight into the mechanisms of the sound generation and propagation

in the vicinity of the flow region and allow the feedback from acoustics to the fluid

flow, the latter of which is extremely important for the adjoint simulation for the

optimal control work. The key in such approach is to use the high order method, in

particular the numerical scheme with low dispersion and dissipation in the far field.

As the recent rapid development of discontinuous Galerkin for it is easy to handle

the complex geometry, high-order and compact, it has gotten strong interest, many

implementations have been proposed and several studies have been performed on

its dissipation and dispersion properties. All these studies indicate that it offers

clear advantages in terms of accuracy when applied to wave propagation problems as

in [45, 101, 111].

Here we propose that in the near field, the Navier–Stokes equation is solved and

the linearized Euler equation or its simplified case (isentropic wave) is used for the

far field. The two are solved through the heterogeneous non-overlapping domain

decomposition approach based on the discontinuous Galerkin framework, which posses

several good features useful for our application. First, they easily allow for varying

the polynomial order of approximation from one element to the next. They also allow

for very general meshes. Finally, the methods are locally conservative, that is, they

are based on satisfying conservation principles element-by-element. Considering the

above features, a multi-domain, multi-model framework is constructed by achieving
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coupling transmission condition through the weakly enforcement using the numerical

flux. Our goal is to reduce the overall time and memory required to capture the

far field acoustics by using locally selected and more computational efficient physical

models without sacrificing the global fidelity of the simulation. In fact, this approach

can be generalized for more complicated heterogeneous domain decomposition if the

corresponding coupling condition is formulated.

In this section, we first give the formulation for the multi-model coupling, then

present the implementation details based on DG. In the BVI problem we are inter-

ested in, solving the linearized Euler or isentropic wave equation in the far field, it

not only brings the computational saving, but also is more efficient for the acous-

tics propagation. All those models or solvers calculate the inviscid fluxes through

the coupling edges. As mentioned before, the discontinuous Galerkin formulation is

adopted to adequately interface these different solvers at different domains. An ex-

plicit approach is first considered to validate the spatial discretization, in the future

the implicit implementation will also be explored. Here we focus on the description of

the two-model formulation, although more models coupling can also be addressed if

the corresponding coupling condition is given. For convenience, the slightly different

formulation is used for the model description.

3.3.2 Formulation

The computational domain Ω is split into two sub-domains as shown in Figure 3.2,

Ωnear for the near field and Ωfar for the far field. The interface between Ωnear and Ωfar

is denoted by Γc.

In the near-field, the flow is modeled using the compressible Navier–Stokes equa-

tions (3.1a) which, in conservative form, are given by

U,t(Y) +
(
Fi,i(Y) − Fv

i,i(Y, ∇Y)
)

= 0 (3.24a)
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in (t0, tf) × Ωnear with boundary conditions

Bnear(Y, g) = 0 on (t0, tf) × ∂Ωnear , (3.24b)

where Bnear includes the coupling between near- and far-field subdomains and the

transpiration boundary condition on the control boundary. The initial conditions in

the near-field are

Y(t0,x) = Y0(x) in Ωnear (3.24c)

where Y0 is typically a steady-state solution of the Navier–Stokes equations over

the rotor blade with a superimposed vortex upstream of the blade in the BVI control

problem. In equations (3.24), n is the unit outward normal vector, Y = (ρ, u1, u2, T )T

is the vector of primitive flow variables, and the conservation variables, expressed as

functions of the primitive variables, are given by U(Y) = (ρ, ρu1, ρu2, ρE)T .

The far-field flow in Ωfar is modeled using the linearized Euler equations (3.25).

We assume that Y = Y+y where Y are mean-flow primitive variables and y are fluc-

tuations in the primitive variables. With this notation, the linearized Euler equations

are

My,t +
(
AiMy

)
,i

= 0 in (t0, tf) × Ωfar (3.25)

where

M(Y) =
∂U
∂Y

∣
∣
∣
∣
Y

Ai(Y) =
∂Fi

∂U

∣
∣
∣
∣
U(Y)

In order to discretize this equation using discontinuous Galerkin, we introduce the

quasi-conservative variables Q(y;Y) = M(Y)y and recast the linearized Euler equa-

tions in the form

Q,t(y) + F′
i,i(y) = 0 in (t0, tf) × Ωfar (3.26a)
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where the flux is given by F′
i(y) = AiQ(y). Equation (3.26a) is solved subject to

appropriate boundary conditions of the form

Bfar(y) = 0 on (t0, tf) × ∂Ωfar . (3.26b)

For the problems presented here, the far-field equations are not explicitly dependent

on the control variables g which live on the near-field control surface. However, B

does represent the coupling between the near- and far-field subdomains as well as

nonreflecting boundary conditions on the outer far-field boundary. Initial conditions

for the far-field problem are of the form

y(t0,x) = y0(x) in Ωfar (3.26c)

where y0 is typically zero and Y is typically a uniform flow. In the following, we

suppress the explicit dependence of far-field quantities on Y unless necessary for

clarity.

Given the similarity of (3.24) and (3.26), we are able to solve these equations in

a unified discontinuous Galerkin framework that is particularly convenient for multi-

model simulation and optimization.

3.3.3 Implementation

The DG method for the near-field is obtained by starting from the strong form of

the compressible Navier–Stokes equations (3.24a). Consider a single element, Ωe,

multiply by a weighting function W that is continuous in Ωe, integrate the flux terms

by parts, replace the actual flux terms by appropriate numerical fluxes, and sum over
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all elements Ω ∈ Ωnear. Doing so results in the discontinuous Galerkin weak form

N∑

e=1

{ ∫

Ωe

(W · U,t + W ,i · (Fv
i − Fi) − W · S) dx +

∫

∂Ωe

W · (F̂n(U−,U+) − F̂v
n(U−, ∇U−,U+, ∇U+)

)
ds

}

= 0 (3.27)

where the U+ and U− states are defined in Figure 3.1. For an element edge on the

subdomain boundary ∂Ωnear, U+ = Ubc for an edge coincident with a prescribed

boundary condition or, in the case of the coupling boundary between Ωnear and Ωfar,

U+ = U(Y +y) on Γc where Y is the mean field and y is the far-field (perturbation)

solution at that edge. Likewise, for inter-element boundaries, U+ comes from the

neighboring element. Thus, all interface and boundary conditions are set through the

numerical fluxes.

The far-field linearized Euler equations (2.12) are also discretized in space using

discontinuous Galerkin with the weighting function on element Ωf denoted by V .

This leads to the DG weak form

M∑

f=1

{
∫

Ωf

(
V · Q,t − V ,i · AiQ − V · S) dx +

∫

∂Ωf

V · F̂′
n(y−,y+) ds

}

= 0 (3.28)

where, again, all interface and boundary conditions are set through the numerical flux.

For the outer far-field boundary, y+ = 0 which is a first-order nonreflecting condition.

On the coupling boundary Γc, y+ = Y(U) −Y where Y(U) is the primitive solution

vector corresponding to the conservative state vector U at the near-field edge.

The coupling between near-field NS and far-field LEE comprises the inviscid and

viscous coupling based on the weak form and numerical flux formulations. Here we

base our multi-domain multi-model coupling on the non-overlapping partition and

describe the construction of coupling condition for our two model formulation as in

Figure 3.3.
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For the inviscid coupling, coupling will be achieved by an approximate Riemann

(an upwind flux) solver at different domains. The solutions are weakly coupled

through the numerical flux. Exploiting the locality of discontinuous Galerkin method,

for the near-field NS element Ωe, the normal numerical flux F̂n(U) at Γc using the

simple Lax-Friedrichs numerical flux (3.6) is defined as

F̂n(U) =
1
2
(
Fn(U) + Fn

′(U(Y,y)) + λm(U − U(Y,y))
)

where the conversion U(Y,y) is the variable transformed from the quasi-conservative

variable Q in the LEE element and

λm = max[
∂Fn(U)

∂U
,
∂Fn

′(U(Y,y))
∂Ū

]

. For the far-field LEE element Ωf ,

F̂′
n(Q) =

1
2
(
F′

n(Q) + F′
n

′(Q(Y,Y)) + λm(Q − Q(Y,Y))
)

where the conversion Q(Y,Y) is the variable transformed from Y in the NS element

and

λm = max[
∂F′

n(Q)
∂Q

,
∂F′

n
′(Q(Y,Y))

∂Q
]

Besides the inviscid coupling, there is also the viscous coupling. Consistent with

our implementation for the state calculation, the Bassi–Rebay numerical viscous flux

[8, 9], defined in (3.7),(3.9) is used for the illustration.

Following (3.7), first a “jump savvy” gradient of the state, σ ∼ ∇U is computed
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Ω1
n

n

Ω2

Ubc

Ω = Ω1 + Ω2

∂Ω

+
−

− +

Figure 3.1: Schematic of DGM discretization [31], the solution and weighting func-
tions discontinuous across element interfaces

by solving

N∑

n=1

∫

Ωn

V T σj dx = −
N∑

n=1

∫

Ωn

V T
,jU dx +

N∑

n=1

∫

∂Ωn/Γc

V T Ûnj ds

+
∫

Γc

V T ̂U(Y,y)nj

∀V ∈ V(Ph) and for j from 1 to d, where

Û =
1
2
(
U− + U+) . ∀∂Ωe/Γc

̂U(Y,y) =
1
2
(
U− + U+(Y,y)

)
. ∀Γc

where U+(Y,y) is related with the LEE element edge and U− is from the NS element

edge.

Our final Bassi–Rebay viscous flux F̂v
n is then computed using

F̂v
n(U−, σ−,U+, σ+) =

1
2
(
Fv

n(U−, σ−) + 0
)

. (3.29)

where Fv
n(U+, σ+) = 0 is the flux contribution from the edge in the linearized Euler

domain, i.e., here the viscous effect is negligible in the linearized Euler domain.
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Near Field Domain

    Far Field Domain

Figure 3.2: Coupling of different fidelity models in the multi-domain, near-field and
far-field

ΓcInterface

Ω n

Ω f

Γn

Γf

NS

LEE

Figure 3.3: Coupling NS and LEE at two element edges
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Optimal Control Formulations

The coupling of accurate computational fluid dynamics analysis with optimal control

theory has the potential to advance active flow-control for complex flows. Application

of optimal control theory directly to the flow governing equations provides a rigor-

ous framework for the active flow control and systematic method to derive control

laws for the most efficient distribution of control effect to achieve a desired objec-

tive. Since our control varies over part of the boundary and in time, the number

of control variables obtained after discretization is huge. Therefore we use adjoint

based gradient method for the solution of the discretization of the optimal system

and the gradient of the objective functional with-respect-to the control is evaluated

efficiently using the adjoints. In general, there are two approaches to adjoint-based

gradient evaluation: the optimize-then-discretize approach (continuous adjoint) and

discretize-then-optimize approach (discrete adjoint). One of the goals of our research

is to evaluate and compare these two approaches for formulating and solving optimal

control problems using DGM. In this chapter, we focus on the optimize-then-discretize

approach by presenting a discussion of the problem formulation, implementation.

4.1 The Objective Functional

Following [37, 38], all optimal control problems treated in this thesis are of the form

min
g∈Gad

J(g) def= Jobs(U(g)) + Jreg(g), (4.1)

where g is the control, Gad is the set of admissible controls, U(g) is the solution of the

state governing equations (NS/Euler/LEE/Wave/Burgers/Advection–Diffusion), Jobs

43
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is the part of the cost function that represents our flow control objective and Jreg(g)

is a regularization term, typically some weighted norm of the control as in [1, 64].

For the discussion of the existence of g and the well-posedness of the optimal control

problem, [37, 38] gives more details.

4.1.1 Cost Functional

Because we are mostly interested in the noise control of aeroacoustics which intends

to minimize the acoustics pressure fluctuation in the far field, we define

Jobs =
∫ tf

t0

∫

Ωobs

α0

2
(p − pa)2dxdt (4.2)

as a measure of aeroacoustic noise to be reduced, where pa is the ambient or steady

mean flow pressure distribution.

Besides the acoustics control problems, there are also other control problems we

are interested in, such as the cylinder vortex shedding suppressing, the Terminal

Kinetic Energy (TKE) control of vortex rebound. The following objective functionals

are also defined

Jobs =
1
2

∫

t

∫

Ωobs

((ρ − ρo)2 + (ρu − ρouo)2 + (ρv − ρovo)2 + (ρE − ρoEo)2)dxdt (4.3)

and

Jobs =
1
2

∫

Ωobs

(ρu2)t=tf dxdt (4.4)

4.1.2 Regularization

Regarding the regularization Jreg(g), it is usually defined as

Jreg(g) =
∫ tf

t0

∫

Γc

(α1

2
‖gt‖2

2 +
α2

2
‖∇g‖2

2 +
α3

2
‖g‖2

2

)
dxdt. (4.5)
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where α1, α2, α3 > 0. For the treatment of those penalty terms gt, ∇g and g, [37,38]

give very good discussion.

4.2 Adjoint equations

All the following adjoint formulations are obtained through continuous adjoint ap-

proach, the detailed derivation is given in Appendix A.

4.2.1 Adjoint Euler

For the adjoint Euler, it is

−λ,t − Ai
T λ,xi

= S (4.6)

where the S is dependent on the objective functional. For the derivation details, it is

in Appendix A.1.1.

4.2.2 Adjoint Navier–Stokes

With the additional viscous flux term Fv, it becomes more complicated to derive

the viscous adjoint governing equations and the boundary condition. The derivation

details are given in Appendix A.1.2. After transformation in Appendix B.1, the

adjoint Navier–Stokes equations is

λ,t + (Fa
i ),xi

− (Ga
i ),xi

+ (Gav
i ),xi

= S̃ (4.7)

where Fa
i , Ga

i and Gav
i are defined in Appendix B.1.
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4.2.3 Adjoint Linearized Euler

For the linearized Euler equation, its adjoint formulation is very similar to that of

adjoint Euler except that the coefficient matrix Ā is from mean flow ū.

−λ,t − Āi
T
λ,xi

= S (4.8)

where

Āi =
∂Fi

∂U

∣
∣
U(ū)

and S is dependent on the objective functional as the variation of Q instead of U.

4.2.4 Adjoint Wave

From the similar adjoint analysis, the formulation for adjoint wave equation is

−λ,t − Āi
T
λ,xi

= S (4.9)

where Ā, S are given in the appendix.

For linearized Euler and isentropic wave equations, their adjoint equations (4.8),

(4.9) are transpose of their state equations (2.13) and (2.17), respectively, except the

adjoint source term from the objective functional (4.1).

4.3 Adjoint Formulations for Multi-Model System

As in our typical problem, blade-vortex interaction in Figure 4.3, the compressible

Navier–Stokes equation is used in the near-field Ωnear and the linearized Euler or isen-

tropic wave equation in the far-field Ωfar. For the illustration, the abstract interface is

given in Figure 4.1. The objective functional J is defined in the observation domain

Ωobs which is inside far-field Ωfar. The control g is the on-blade control, which lies in

Γc of near-field Ωnear. The coupling interface between near-field and far-field is Γnf . In
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the following derivation of the adjoint coupling condition, we assume the mean flow in

the far field is not affected by the near-field control(i.e., boundary blowing/suction)

and use the same formulation in §3.3.2

4.3.1 State Coupling

Consider the coupling of NS and LEE or Wave, the transmission operator is defined

between U and Q. Because of the far-field linearization based on the primitive

variables, the transformation uses the primitive variables Y and y.

NS/LEE

Due to the linearization in the far field, the conversion from y of LEE to Y of NS is,

Y = IY + Iy (4.10)

and that from NS to LEE is,

y = IY − IY (4.11)

where I is the identity matrix.

By weakly coupling through the numerical flux, we achieve the inviscid flux cou-

pling for the state solution coupling between LEE and NS besides the viscous flux

coupling formulated in §3.3.3.

∫

Γnf

W · N̂n

(
IY + Iy
︸ ︷︷ ︸

LEE

, Y︸︷︷︸
NS

)
dΓ ,

∫

Γnf

W ′ · F̂n

(
IY − IY︸ ︷︷ ︸

NS

, y
︸︷︷︸
LEE

)
dΓ (4.12)
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NS/Wave

For the coupling of Wave and NS, y is defined as

y = [ρ′ u′ v′]T

considering the isentropic acoustics, p′ = c2ρ′, where c =
√

T̄ is the local sound speed,

T ′ = T − T̄ = γ
p + p′

ρ + ρ′ − γ
p̄

ρ̄

≈ (γ − 1)
T̄

ρ̄
ρ′

The transmission operator from y of Wave to Y of NS is

Y = IY +

⎛

⎜
⎜
⎜
⎜
⎝

1 0 0

0 1 0

0 0 1
(γ−1)T̄

ρ̄
0 0

⎞

⎟
⎟
⎟
⎟
⎠

⎛

⎜
⎜
⎝

ρ′

u′

v′

⎞

⎟
⎟
⎠

= IY + Wy (4.13)

and from Y of NS to y of Wave is

y =

⎛

⎜
⎜
⎝

1 0 0 0

0 1 0 0

0 0 1 0

⎞

⎟
⎟
⎠ (Y − Y)

= NY − NY (4.14)

The convective flux coupling between Wave and NS is

∫

Γnf

W · N̂n

(
IY + Wy
︸ ︷︷ ︸

Wave

, Y︸︷︷︸
NS

)
dΓ ,

∫

Γnf

W ′ · F̂n

(
NY − NY︸ ︷︷ ︸

NS

, y
︸︷︷︸
Wave

)
dΓ

(4.15)

Besides the inviscid flux coupling, there is also the viscous flux coupling described

in §3.3.3.
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4.3.2 Adjoint Coupling

We use a gradient-based optimization procedure to solve the optimal control problem

represented by minimizing (7.1) subject to the state equations (3.24) in the near-

field and (3.26) in the far-field. The gradient is computed using a continuous adjoint

method (i.e. the optimize-then-discretize approach). For the adjoint coupling, we

introduce the following assumption that the mean flow in the far field is not affected

by the near-field control(i.e., boundary blowing/suction), which is reasonable if the

coupling interface is faraway from the near field. Therefore, variation of the mean

flow in the far field Y
′
= 0. Due to the linearization in the far field, variation of y

also leads to y = y′.

The variation of two operators (4.10), (4.11) becomes

Y′ = Iy (4.16)

y = IY′ (4.17)

and variation of (4.13) and (4.14) becomes

Y′ = Wy (4.18)

y = NY′ (4.19)

We begin by introducing the adjoint variables λ for the near-field Navier–Stokes

equations and ξ for the linearized Euler equations in the far-field. We then define an
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augmented Lagrangian as

L(U(Y), Q(y), g, λ, ξ)

= J(Q(Y,y), g) +
∫ tf

t0

∫

Ωnear

λT (U(Y)t + Fi,i − Fv
i,i)dx

+
∫ tf

t0

∫

Ωfar

ξT (Q(Y,y)t + (ĀiQ),i)dx

+
∫

Ωnear

(λ0)T (U − U0)dx +
∫

Ωfar

(ξ0)
T (Q − Q0)dx

(4.20)

Assuming J(Q(Y,y), g) is only defined inside far-field Ωf , variation over (4.20),

L′(U(Y), Q(Y,y), g, λ, ξ)

= J ′ +
∫ tf

t0

∫

Ωnear

λT (U′
,t + Fi,i

′ − Fv
i,i

′)dx +
∫

Ωnear

(λ0)TU′dx

+
∫ tf

t0

∫

Ωfar

ξT (Q′(Y,y),t + (ĀiQ
′),i)dx +

∫

Ωfar

(ξ0)
T Q′dx

= J ′ +
∫ tf

t0

∫

Ωnear

(λTU′
,t + λ,i

TFv
i
′ − λ,i

TFi
′)dx

+
∫ tf

t0

∫

∂Ωnear

(λTFn
′ − λTFv

n
′)dx +

∫

Ωnear

(λ0)TU′dx

+
∫ tf

t0

∫

Ωfar

(ξT Q′(Y,y)t − ξi
T ĀiQ

′)dx

+
∫ tf

t0

∫

∂Ωfar

ξT ĀnQ
′
dx +

∫

Ωfar

(ξ0)
T Q′dx

= JQQ′ +
∫ tf

t0

∫

Ωnear

−UT ′(λ,t + (Fa
i ),xi

− (Ga
i ),xi

+ (Gav
i ),xi

− S̃)dx

+
∫ tf

t0

∫

∂Ωnear/Γnf

(λT F̂n

′ − λT F̂v
n

′
)dx +

∫ tf

t0

∫

Γnf

(λT F̂n

′ − λT F̂v
n

′
)dx

+
∫ tf

t0

∫

Ωfar

QT ′
(−ξ,t − Āi

T
ξ,xi

)dx

+
∫ tf

t0

∫

∂Ωfar/Γnf

ξT ̂̄AnQ
′
dx +

∫ tf

t0

∫

Γnf

ξT ̂̄AnQ
′
dx

+
∫

Ωnear

UT ′
λ|tf dx +

∫

Ωnear

UT ′(λ0 − λ)|t0dx

+
∫

Ωfar

QT ′
ξ|tf dx +

∫

Ωfar

QT ′
(ξ0 − ξ)|t0dx

(4.21)
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where the last several terms represent the adjoint initial conditions for the near/far-

field, and more derivation details are given in Appendix A, B.

From the variation U′ in Ωnear, we get the near-field adjoint Navier–Stokes equa-

tion (B.8), where there is no contribution from J , given that J is only defined inside

far-field. In the same manner, the adjoint linearized Euler (4.8) in the far field is

obtained. Next we will focus on the derivation of the adjoint transmission condition

at Γnf .

Adjoint inviscid coupling

Similar to the state coupling, the adjoint coupling will be divided into the adjoint

inviscid and adjoint viscous coupling. We will treat the two terms λT F̂n

′
and λT F̂v

n

′
,

separately. For the numerical flux of F̂n

′
and ̂̄AnQ

′
, both use the Lax–Friedrichs flux

(3.6) as

λT F̂n

′
= λT 1

2

(
Fn(Y)′ + Fn(IY + Fy)

′
+ λm

(
U′ − U′(IY + Fy)

))

= λT 1
2
(∂Fn

∂Y
Y′ +

∂Fn(Y + Fy)
∂Y

(Y
′
+ Fy′)

+λm

(
∂U
∂Y

Y′ − ∂U(Y + Fy)
∂Y

(Y
′
+ Fy′)

)
)

=
1
2
Y′T

(
∂Fn

∂Y

T

λ + λm
∂U
∂Y

T

λ

)

+
1
2
(Fy′)T

(
∂Fn(Y + Fy)

∂Y

T

λ − λm
∂U(Y + Fy)

∂Y

T

λ

)

ξT ̂̄AnQ
′

= ξT 1
2
(
ĀnQ

′(Y,y) + AnQ′(Y,N(Y − Y))

+λm

(
Q′(Y,y) − Q′(Y,N(Y − Y))

) )

=
1
2
y′T
(

∂Q

∂Y

T

An
T ξ − λm

∂Q

∂Y

T

ξ

)

+
1
2
(NY′)T

(
∂Q

∂y

T

An
T ξ + λm

∂Q

∂y

T

ξ

)
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In the above derivation, we assume that the far field mean flow Y is steady and

not affected by the control so that Y
′
= 0.

So

∫ tf

t0

∫

Γnf

λT F̂n

′
dx +

∫ tf

t0

∫

Γnf

λT
̂AnQ

′
dx

=
∫ tf

t0

∫

Γnf

1
2
Y′T

(

(
∂Fn

∂Y

T

+ λm
∂U
∂Y

T

)λ − NT (
∂Q

∂y

T

An
T + λm

∂Q

∂y

T

)ξ
)

−1
2
y′T ((

∂Q

∂y

T

An
T − λm

∂Q

∂y

T

)ξ

−FT (
∂Fn(Y + Fy)

∂Y

T

− λm
∂U(Y + Fy)

∂Y

T

)λ
)

and consider the following transformation

M =
∂U
∂Y

M =
∂Q

∂y

∂Q

∂y

T

An
T =

∂U
∂Y

T
∂Fn

∂U

T

=
∂Fn

∂Y

T

we obtain the adjoint operator between the near-field and far-field

• From far-field ξ to near-field λ,

(
∂Fn

∂Y

T

+ λmMT )λ = NT (
∂Fn

∂Y

T

+ λmM
T
)ξ ∀Γnf (4.22)

• From near-field λ to far-field ξ,

(
∂Fn

∂Y

T

− λmM
T
)ξ = FT (

∂Fn(Y + Fy)
∂Y

T

− λmM(Y + Fy)
T
)λ ∀Γnf

(4.23)

The implementation details for the adjoint inviscid coupling are shown in Figure 4.4.

It is very similar to the state inviscid coupling in §3.3.3.
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NS/LEE Consider the state coupling condition (4.10), (4.11), both N and F are

identity matrix, so (4.22), (4.23) becomes

(
∂Fn

∂Y

T

+ λmMT )λ = (
∂Fn

∂Y

T

+ λmM
T
)ξ ∀Γnf (4.24)

and

(
∂Fn

∂Y

T

− λmM
T
)ξ = (

∂Fn(Y + y)
∂Y

T

− λmM(Y + y)
T
)λ ∀Γnf (4.25)

(4.24) and (4.25) can be approximate as

λ = ξ

ξ = λ at Γnf

NS/Wave Consider the state coupling condition (4.13), (4.14),

(
∂Fn

∂Y

T

+ λmMT )λ = NT (
∂Fn

∂Y

T

+ λmM
T
)ξ ∀Γnf (4.26)

and

(
∂Fn

∂Y

T

− λmM
T
)ξ = WT (

∂Fn(Y + y)
∂Y

T

− λmM(Y + y)
T
)λ ∀Γnf (4.27)

Two linear equations (4.26), (4.27) need to be solved to get λ|NS = N(ξ|Wave)

and λ|Wave = F (ξ|NS) at coupling interface Γnf .

Adjoint viscous coupling

Besides the adjoint inviscid flux coupling, there is also the viscous coupling for

−λT F̂v
n

′
, which can be transformed into the two terms, adjoint viscous convection

term −U′Ĝa
n and adjoint diffusion term U′Ĝav

n . More details are given in Appendix

B.1. Here those two terms are only from the adjoint Navier–Stokes equations.
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Adjoint viscous convective flux Ĝa
n For the coupling at Γnf , the numerical flux

Ĝa
n, we are using the central flux as in B.1.1. Because of the coupling, there is no

contribution from LEE/Wave side Ωf , so

Ĝ
a

n(λ−, λ(ξ)+) =
1
2
(
Ga

n(λ−) + 0
) ∀Γnf (4.28)

Adjoint viscous diffusive flux Ĝav
n For the coupling at Γnf , the numerical flux

Ĝav
n , we are using the Bassi–Rebay flux as in §3.3.3. Because of the coupling, there

is no flux contribution from LEE/Wave side Ωf .

Following (3.7), first a “jump savvy” gradient of the state, σ ∼ ∇λ is computed

by solving

N∑

e=1

∫

Ωe

V T σj dx = −
N∑

e=1

∫

Ωe

V T
,jλ dx +

N∑

e=1

∫

∂Ωe/Γef

V T λ̂nj ds

+
∫

Γef

V T λ̂(ξ)nj

∀V ∈ V(Ph) and for j from 1 to d, where

λ̂ =
1
2
(
λ− + λ+) . ∀∂Ωe/Γnf

λ̂ =
1
2
(
λ− + λ+(ξ)

)
. ∀Γnf

where λ+(ξ) is related with the linearized Euler element edge and λ− is from the NS

element edge.

Our final Bassi–Rebay viscous flux Ĝ
av

n is then computed using

Ĝ
av

n (λ−, σ−, λ+, σ+) =
1
2
(
Gav

n (λ−, σ−) + 0
)

. ∀Γnf (4.29)

where Gav
n (λ+, σ+) = 0 is the flux contribution from the edge in the linearized Euler
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domain, which is zero in our adjoint formulation.

4.3.3 Optimal Control of Multi-model System

Our optimization strategy for the multi-model system is shown in Figure 4.2. Com-

bining the multi-model solver for the state and adjoint, we get our gradient infor-

mation for the multi-model system. With the suitable gradient-based optimization

algorithms, we are able to solve the optimal control problem for the multi-model

system.

4.4 Optimization Algorithm

4.4.1 Conjugate Gradient

The control is updated using a gradient based algorithm. Solution of the optimality

equations yields the gradient of the objective functional with respect to the control

which should be equal to zero at the optimum. We use a nonlinear conjugate gradient

method to solve this optimization problem as in [20, 22, 33, 35, 38]. After the state

and adjoint equations are solved, the gradient of the cost functional can be obtained.

Following the optimization method, an iterative update method based on the Polak-

Ribiere conjugate gradient algorithm [97] is used in our work. It is given by

Φ
k+1

= Φ
k

+ αkhk (4.30)

where the update direction hk = −gk + βkhk−1, gk is the gradient obtained from

(A.28), (A.32) or (A.33), βk = (gk − gk−1) · gk/(gk−1 · gk−1). The step-size αk

determines how far one moves in the direction hk to obtain the new control. At each

iteration, the value of αk is calculated by using several test αk to minimize J k+1
in

the direction of hk using line minimization, which is a testing procedure to find the
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minimum value of α in the function J (Φ
k

+ αhk), where Φ
k

and hk are known and

α is the independent variable [97].
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Near Field 

    Far Field Ωfar 

Ωnear nfΓ

obsΩ 

Figure 4.1: Schematic of optimal control problem for coupled system

State Coupling Adjoint Coupling

Gradient
Evaluation

Optimization Algorithm

Update Control

Figure 4.2: Optimization strategy for the multi-model system using the adjoint
approach
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Figure 4.3: Schematic of multi-domain/model for blade-vortex interaction
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Figure 4.4: Adjoint coupling for the multi-model implementation



Chapter 5

State Validation

In this chapter, we give results of state solution without control based on the single

model and multi-model to validate our state solver, especially the linearized acoustics

solvers. Such validation for accurate state solution is crucial for evaluating the control

strategies. This chapter begins with two validation results for the linear solvers,

linearized Euler and isentropic wave solver, by presenting one dimensional planar

acoustics propagation and the benchmark problem of the acoustics scattering. Results

are presented and compared to the existent analytical solution.

To validate the multi-model multi-domain algorithm, the second part of this chap-

ter presents the acoustic results from three cases with different model coupling: acous-

tics scattering, inviscid vortex cylinder interaction and viscous vortex rotor-blade in-

teraction, along with comparisons to the available analytical results or the solutions

from direct full-field acoustics solver.

5.1 Planar Acoustic Waves

To validate our linearized Euler or isentropic Wave equation solver, we consider a

linear planar acoustics problem as our first validation case. Based on the characteristic

59
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relations for the Euler equations [57]

δw1 = δρ − δp

c2

δw2 = nyδu − nxδv

δw3 = −→n −→u +
δp

ρc

δw4 = −−→n −→u +
δp

ρc
(5.1)

In (5.1), the four equations correspond to the entropic, vortical, and two acoustic

wave. If considering the isentropic and isvorticity acoustics, the first two characteristic

variables will be zero. Given the acoustics distribution, we can get the initial acoustic

formulation.

5.1.1 1D Gaussian Acoustics

In this case, an initial condition of Gaussian pulse exp(− (x−x0)2

λ2 ) is used, the wave

propagates toward the x axle direction.

δp =
ε exp(− (x−x0)2

2λ2 )
2

δρ =
ε exp(− (x−x0)2

2λ2 )
2c2

δu =
ε exp(− (x−x0)2

2λ2 )
2ρc

δv = 0 (5.2)

It is one dimensional problem, however we solve it in two dimensional setting with

both periodical boundary condition for left/right and top/bottom boundary. There

is no mean flow ū = 0, v̄ = 0. For this acoustics setting, the reference M = 0.3 and

the local sound speed c = 3.3333. From the planar acoustics physics, in theory we

know the planar acoustics will travel to f(x − c ∗ t) at time t for a right propagating
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planar acoustics as

p = p̄ +
ε exp(− (x−ct−x0)2

2λ
)

2

ρ = ρ̄ +
ε exp(− (x−ct−x0)2

2λ
)

2c2

u =
ε exp(− (x−ct−x0)2

2λ
)

2ρc

v = 0

where ε = 0.001, x0 = 1.5. Considering c = 3.33333 and the periodical boundary

condition, at t = 12.0 after 60000 steps with time step δt = 0.0002, the acoustics is

supposed to be back to the initial position, which is also our analytical solution at

t = 12. We solve this problem with three solvers, linearized Euler, isentropic Wave

and full Euler solvers, all in the conservative form (2.12), (2.16) and (2.1). The whole

domain includes 25 elements with p = 5 in each element as in Figure 5.3. Through

this numerical experiment, we want to study the dispersion and dissipation property

of the our linear acoustics solver at different resolution after traveling 40 wave length.

Numerical Result

Figure 5.4 shows the numerical and theoretical result for density fluctuation ρ′ at

t = 12. At p = 3, there is around 7 points per wave length, it is well below the

resolution required to resolve the acoustic pulse. As expected, at p = 3 even the

initial condition is not smooth at all in Figure 5.4. There is also some jumps in

the middle at so low resolution. After travelling 40 wave length, because of the

numerical dissipation at the low resolution, there is some obvious change for the wave

amplitude. All those are desirable at the low resolution for acoustic computation.

Increasing p = 3 to p = 5, now there is 9 points per wave length. We get much better

agreement between the analytical and numerical solution in Figure 5.5, although there
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is still some noticeable errors. Increasing to p = 8, the agreement becomes perfect in

Figure 5.6. We also solve this problem using the isentropic wave solver. Due to the

isentropic property of this problem, in theory both solvers (LEE and Wave) should

give the same accuracy, which is shown in Figures 5.7. It is also shown in Figure 5.9

where the relative error from LEE and Wave is the same. Solving this problem with

the nonlinear Euler solver, we still get excellent solution in Figures 5.8 and 5.9. The

error is comparable to that from LEE and Wave solvers at most of state resolution,

however at high resolution the relative error is not as good as those from the linear

solvers, which might be from its nonlinear effect as in Figure 5.9.

5.2 Acoustic Scattering from Cylinder

For the blade-vortex interaction problem, one very important aspect is to accurately

capture the resulting acoustic wave propagating away from the blade. To ensure our

acoustics solver accurately capture such acoustics, we have validated our code for the

classical benchmark problem of planar acoustics scattering from a circular cylinder,

because of the known analytical solution. This interaction results the scattered wave

propagating away from the cylinder. This problem has also been computed by Collis

[29] in frequency domain for the validation for the leading-edge receptivity problems.

We have validated this case of planar acoustics scattered from a stationary circular

cylinder of radius a = 0.5 subject to a plane acoustic-wave travelling perpendicular

to the cylinder axis. In this case, the reference length is the cylinder diameter, the

reference velocity is the uniform mean flow speed U∞ = 1.0 and all other reference

quantities are based on the far field values.
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The incident plane-wave is expressed as

pi = P0e
ik(x−ct) (5.3)

k =
2π
λ

(5.4)

where the direction of propagation is along the positive x-axis and P0 is the incident

pressure amplitude, here it is 0.01. Under these conditions, the scattered pressure

wave is expressed by the following Bessel Function expansion as defined in [87],

Ps =
∞∑

m=0

Am cos(mθ)[Jm(kr) + iNm(kr)]e−iωt (5.5)

where (r, θ) are the usual cylindrical coordinates, ω = 2πc
λ

and

Am = −εmP0i
m+1e−iγm sin γm

tan γ0 = − J1(k)
N1(k)

with ε0 = 1 and εm = 2 for all m larger than zero. Jm and Nm are Bessel functions

of first- and second-kind, respectively.

The simulation is conducted for an incident acoustic wave with wave number

k = 2.5. The whole domain Ω is quite large [−30, 30] × [−30, 30] with sponge layer

enforced around the perimeter of the domain to approximate a nonreflecting boundary

[39, 40].

Since the computational domain is very large, at the left boundary, locally the

plane acoustic wave is forced for the acoustics propagation. Over the region Ω\[−20, 20]×
[−20, 20], an outflow sponge term is added to damp only the scattered field with the

incident wave unaffected. This is accomplished by the sponge term

W (q) = −fd(�x)(q − qi) (5.6)
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where qi is the vector of the conservative variables corresponding to the incident plane

acoustic wave, which is a reference state of a spatial coordinates and of time. The

sponge function for our case is designed to vary smoothly from zero in the interior to

a finite value As on the boundary and given by

fd(�x) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

As( x+20
−30+20)

Ns x ∈ [−30, −20]

As( x−20
30−20)

Ns x ∈ [20, 30]

As( y−20
30−20)

Ns y ∈ [20, 30]

As( y+20
−30+20)

Ns y ∈ [−30, −20]

0 otherwise

with As = 100 and Ns = 3. Such implementation for the far field boundary is pretty

effective, as in Figure 5.11, the scattered acoustics is damped very smoothly and

cleanly in the sponger layer around the boundary.

For this simulation, the incident acoustic wave length is λ = 2.51327. In Fig-

ure 5.10 the computational domain comprises 6832 quadrilateral elements with per

element size around h = 0.8, polynomial order p = 6 for each element. There are at

least 18 nodes per wave length.

This problem is solved with the full Euler, linearized Euler and Wave solvers.

Here we present some results from linearized Euler solver. Figure 5.11 shows contours

of the instantaneous, scattered pressure field from the simulation demonstrating the

damping of the scattered field in the sponge region. The scattered pressure RMS Prms

along the ray θ = π is shown in Figure 5.12[a] compared to the theoretical solution

(5.5). As expected, the acoustic intensity approaches constant far from the cylinder

which confirms the expected 1/r decay of the scattered acoustics. In the sponge, the

intensity of the scattered wave is smoothly damped to zero. Furthermore, we also

validate the directionality of the scattered acoustics, which is very important for our

future BVI acoustics simulation and its control. Figure 5.12[b] shows a polar plot of

the scattered pressure Prms at r = 10.0. It shows excellent agreement between the
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theory and simulation. Both the two plots show that our linear acoustics solver can

accurately predict the intensity and directionality of acoustic wave scattered from a

solid body.

5.2.1 Euler/Wave

As validation of our multi-model approach, this classical acoustics benchmark problem

using Euler/Wave coupling is also presented for the validation. In Figure 5.13, it can

be seen that a very arbitrary interface is selected that separates the Euler domain in

the near field from the wave equation domain in the far field. The pressure field shown

in Figure 5.13 from the simulation also demonstrates the damping of the scattered

wave in the sponge region. Note that this mesh is also partitioned into multiple

domains for the parallel computation.

Figures 5.14 and 5.15 show contours of the instantaneous, total and scattered

pressure field from the simulation and very smooth solutions are obtained near the

coupling surface. In Figure 5.16, the RMS pressure from the scattered wave is com-

pared with the analytical solution from inviscid theory and both ray and polar RMS

pressure agree with the theoretical results with no indication of inaccuracies near the

coupling interface. This test case demonstrates that our multi-model approach can

accurately predict the intensity and directionality of acoustic wave scattered from a

solid body and gives us confidence in our multi-model formulation.

5.3 Vortex-Cylinder Interaction

The flexibility of our coupling approach is demonstrated from the following simulation

results for a vortex interacting with a circular cylinder in a uniform flow M = 0.3

as in Figure 5.1. The simulation results from heterogeneous domain decomposition

approach will be compared with that from direct Euler solver. In this problem, the
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Figure 5.1: Inviscid vortex cylinder interaction

domain is decomposed into two domains, a linearized Euler (LEE) or isentropic Wave

domain outside and Euler domain inside as in Figure 5.17. The collocation mesh,

shown in Figure 5.18 shows that the dense mesh is used along the vortex trajectory.

With this approach, the discontinuous Galerkin method can accurately capture the

evolution of the inviscid vortex while efficiently resolving the acoustic field away from

the cylinder. Such model problem has been used as the prototype for the Blade-

Vortex-Interaction noise capture and its optimal control [33].

For the multi-model simulation, both Euler/LEE and Euler/Wave have been ap-

plied. To validate the solution from our multi-model solver, we place several observa-

tion points P0, P1 and P2 in the computational domain as in Figure 5.17, so we can

compare the ρ, p, u and v history at those observation from direct Euler, Euler/LEE

and Euler/Wave. Furthermore, we also define two coupling interface in Figure 5.17

to investigate the effect of the coupling interface location.

In Figure 5.19, the pressure contours at t = 15.0 from direct Euler and Euler/LEE

coupled solver looks extremely similar, both of which are in the same contour levels.

Furthermore, in Figure 5.20, around the coupling interface the pressure contour is also

quite smooth without any discontinuities. Figures 5.21, 5.22 and 5.23 are the time

history of ρ, p, u and v at the observation of P0, P1 and P2, using the smaller coupling

interface. From those figures, the solution from Euler, Euler/LEE and Euler/Wave

has excellent agreement at the observation inside or outside the coupling interface. As

expected, increasing the Euler domain inside, we still get the excellent time history
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at P0, P1 and P2 as in Figures 5.24, 5.25, and 5.26. Both the small and big coupling

surface is far away from the vortex trajectory, which make it reasonable to assume

the linear far-field. All those indicate that the solution from multi-model approach

(Euler/LEE, Euler/Wave) agrees very well with that from direct Euler solver at the

observation inside or outside the coupling interface.

To investigate the effect from the multi-model formulation, Figure 5.27 shows the

pressure error history p − pEuler from Euler/LEE and Euler/Wave at P0. The errors

from Euler/Wave and Euler/LEE are quite small using the small and large coupling

interface. The difference of using Euler/Wave and Euler/LEE is very small and the re-

sult of Euler/LEE is slightly better. As expected, making Euler domain inside bigger

does make the solution slightly better for both Euler/Wave and Euler/LEE coupling.

However, under the small coupling interface, the error from both Euler/Wave and

Euler/LEE after t = 24.0 becomes significant. The peak error at t = 24.5 is around

0.1, which is quite large. Check the vortex trajectory in Figure 5.17, at that time the

vortex has passed the small coupling interface and entered the LEE or Wave domain.

The error due to the vortex in a linear domain will propagate to P0. Such error has

also been noticed by Brentener for the Kirchhoff method when the vortex passed the

Kirchhoff surface [16, 17].

Figure 5.27 is the pressure error history at P0 inside both coupling surfaces. If there

was no feedback from the far field acoustics to the inside fluid flow, the pressure history

at P0 should have been the same as that from direct Euler solver. On the contrary,

the pressure error history in Figure 5.27 indicates that the far-field linear modelling

gives the feedback to the near-field fluid flow and eventually affects the near-field state

solution. However, such feedback is quite small as shown in Figure 5.27. Figure 5.28

shows the pressure error history at the observation P1, which is between the big and

small coupling interfaces. There is very little difference between Euler/Wave and
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Euler/LEE coupling. With larger coupling interface, the error is less. In Figure 5.29

it is the error history for the far field pressure at P2. Compared with that from

direct Euler solver, both Euler/Wave and Euler/LEE gives excellent pressure history

using the small and large coupling interface. Larger coupling interface gives better

solution. Check the pressure error history at P2 in Figure 5.29, it is similar to P1.

Both Euler/Wave and Euler/LEE give excellent solution, the solution using the larger

coupling interface is better.

In summary, for this specific problem, we conclude that the both Euler/Wave

and Euler/LEE coupling gives very excellent agreement with the solution from direct

Euler solver. The difference between the two multi-model coupling is very small,

Euler/LEE coupling does give slightly better solution. The solution is more sensitive

to the location of the coupling interface. To get the accurate far field pressure, the

location of the coupling interface is very important. Too small interface will bring

the nonlinearity into the linear domain and makes the far field modelling inaccurate.

The location of both coupling interface are far away from the vortex trajectory which

makes it contain the nonlinear interaction inside as in Figure 5.17. As expected, we

get excellent time history of p,u and v for P1 for all the three observation locations.

However, there is slight error in Figure 5.28 when the vortex passes the small coupling

interface. Considering the extra cost from LEE and limited improvement, we con-

clude that for the far field, the isentropic Wave equation with the reasonable domain

partition should be adequate for the far-field acoustics computation.

5.4 Vortex-Rotor Interaction

In this section, a model BVI problem is presented in Figure 5.2, where the rotor is Bell

AH-1 rotor blade, the vortex is the compressible Oseen vortex. The Oseen vortex is

advected towards the rotor blade in the uniform flow of M = 0.3. For this kind of BVI
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Figure 5.2: Schematic of Bell AH1 rotorblade vortex interaction

problem, where the impulsive noise is usually generated by the rotating machinery,

the simplified model, an Euler [70] or even a full potential model [63] may be adequate

because the turbulence is not so important. Because of our interest in applying the

blowing/suction on the surface of the rotor blade for the on-blade control, which may

introduce vorticity at the blade surface to alleviate the interaction between the vortex

and the blade, we decide to use the Navier–Stokes (NS) equations in the near field

to capture the viscous phenomenon. In the far field, the nonlinearity and viscosity

is very weak, the linearized Euler or isentropic Wave equations is adequate for the

acoustics propagation. Such domain partition is to make the inside domain better

resolve the viscous effect where the very dense mesh is used and the sparser mesh is

used outside to capture the BVI noise.

For this multi-model simulation in Figure 5.30, in the near field, the viscous NS

equations are used and the linearized Euler or isentropic wave equations are applied

in the far field to capture the BVI noise. To study the effect of the multi-model

coupling, we place several observation points P0, P1, P2 and P3 in the computational

domain as in Figure 5.31 so that we can compare the pressure and velocity history at

those observation from direct NS, NS/LEE and NS/Wave.

This problem setup follows Lee’s work [70] using the completely structured mesh.

Reynolds number Re = 1000 is used for this viscous BVI problem. The problem of

wakes forming and hitting the right boundary in [70] is fixed using the sponger layer

defined in [3.72, 6.5] × [−1, 1] in the NS domain. The reference state Uref in the

sponge is obtained by solving a steady flow of freestream passing the Bell AH-1 rotor
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with free stream as the reference state in the sponge layer.

In Figure 5.32, the scattered pressure contours at t = 68.4 from direct NS and

NS/LEE coupled solver looks very similar, both of which are in the same contour

levels. However, for the scattered pressure contour from direct NS solver, there is two

additional pressure acoustics in the far field. It appears to be from the viscous effect

in the far field. Around the coupling interface, the scattered pressure contour is also

quite smooth without any discontinuities in Figure 5.32[b].

Figure 5.33 shows the time history of p, u and v at the observation of P0, which

is located outside the coupling interface. All show that the solution from direct NS,

NS/Wave and NS/LEE have excellent agreement. The same happens for that of P1,

P2 and P3 as in Figures 5.34, 5.35 and 5.36. It indicates that the solution from multi-

model approach(NS/LEE, NS/Wave) have excellent agreement with that from direct

NS solver at the observation inside or outside the coupling interface, although there

is some slight error for u and v from coupled solver compared with that from NS at

the end of time history in Figures 5.34, 5.35 and 5.36.

Compared with the pressure from direct NS, the difference from multi-model solver

is more obvious in Figure 5.37 for P0 which is in the linear domain above the blade.

NS/Wave and NS/LEE give similar pressure history with very little difference. The

peak error is between 10−4 and 10−3. For P1, it is inside NS domain. The difference

from multi-model solver is small, but not negligible. It indicates that the current

coupling is dual communication, i.e., the near-field and far-field affects each other,

which is contrary to the traditional coupling, such as FW-H equation and Kirchhoff

method, both of which assume that the far-field acoustics won’t reflect back. Because

of the similar location, the pressure history of P2 is also similar to that of P0 in

Figure 5.39, the difference between NS/Wave and NS/LEE is extremely small.
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Figure 5.3: One-dimensional Gaussian pulse propagation using 25 elements with
polynomial order p = 5, quadrilateral mesh
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Figure 5.4: LEE: density fluctuation ρ′ with polynomial order p = 3: initial
profile; the profile at t = 12;
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Figure 5.5: LEE: density fluctuation ρ′ with polynomial order p = 5: initial
profile; the profile at t = 12;
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Figure 5.6: LEE: density fluctuation ρ′ with polynomial order p = 8: initial
profile; the profile at t = 12;
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Figure 5.7: Wave: density fluctuation ρ′ with polynomial order p = 5: initial
profile; the profile at t = 12;
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Figure 5.8: Euler: density fluctuation ρ′ with polynomial order p = 5: initial
profile; the profile at t = 12;
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Figure 5.9: Relative error Vs. Polynomial order p
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Figure 5.10: Mesh for the planar acoustics scattering
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Figure 5.11: Scattered pressure
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(a)

(b)

Figure 5.12: (a) Comparison of RMS pressure along the ray θ = π, (b) Comparison
of RMS pressure along radius r = 10
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Figure 5.13: Acoustic scattering from a circular cylinder: incident and scattered
pressure on the full domain. The irregular solid line denotes the interface between
the Euler region in the near field and the wave equation region in the far field
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Figure 5.14: Incident and scattered pressure near the cylinder
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Figure 5.15: Scattered pressure near the cylinder
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Figure 5.16: (a) Comparison of RMS pressure along the ray θ = π, (b) Comparison
of RMS pressure along radius r = 10 (that is outside the coupling interface).
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Figure 5.17: Domain/model decomposition for inviscid vortex cylinder interaction
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Figure 5.18: Mesh for inviscid vortex cylinder interaction
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Figure 5.19: Pressure contours from direct Euler and Euler/Wave coupled solver,
both are in the same contour levels: (a) Pressure contour from direct Euler solver at
t = 15.0, (b) Pressure contour from coupled Euler/Wave solver at t = 15.0.
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Figure 5.20: Pressure closeup around the coupling interface
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Figure 5.21: Time history at P0 using the smaller coupling interface: (a) Density ρ,
(b) Pressure p, (c) Velocity u (d) Velocity v. Euler/Wave; Euler/LEE;

Euler.
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Figure 5.22: Time history at P1 using the smaller coupling interface: (a) Density ρ,
(b) Pressure p, (c) Velocity u (d) Velocity v. Euler/Wave; Euler/LEE;

Euler.
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Figure 5.23: Time history at P2 using the smaller coupling interface: (a) Density ρ,
(b) Pressure p, (c) Velocity u (d) Velocity v. Euler/Wave; Euler/LEE;

Euler.
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Figure 5.24: Time history at P0 using the larger coupling interface: (a) Density ρ,
(b) Pressure p, (c) Velocity u (d) Velocity v. Euler/Wave; Euler/LEE;

Euler.
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Figure 5.25: Time history at P1 using the larger coupling interface: (a) Density ρ,
(b) Pressure p, (c) Velocity u (d) Velocity v. Euler/Wave; Euler/LEE;

Euler.



88 Chapter 5. State Validation

Figure 5.26: Time history at P2 using the larger coupling interface: (a) Density ρ,
(b) Pressure p, (c) Velocity u (d) Velocity v. Euler/Wave; Euler/LEE;

Euler.
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Figure 5.27: Pressure error history |p − pEuler| at P0: Euler/LEE with large
surface; Euler/LEE with small surface; Euler/Wave with large surface;

Euler/Wave with small surface.

Figure 5.28: Pressure error history |p − pEuler| at P1: Euler/LEE with large
surface; Euler/LEE with small surface; Euler/Wave with large surface;

Euler/Wave with small surface.
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Figure 5.29: Pressure error history |p − pEuler| at P2: Euler/LEE with large
surface; Euler/LEE with small surface; Euler/Wave with large surface;

Euler/Wave with small surface.
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Figure 5.30: Bell AH1 rotorblade vortex interaction: Motivation
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Figure 5.31: Bell AH1 rotorblade vortex interaction: scattered pressure evolution
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Figure 5.32: Scattered pressure contours from direct NS and NS/Wave coupled
solver, both are in the same contour levels: (a)Scattered pressure contour from direct
NS solver at t = 68.4, (b)Scattered pressure contour from coupled NS/Wave solver
at t = 68.4.
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Figure 5.33: Time history at P0: (a) Density ρ, (b) Pressure p, (c) Velocity u (d)
Velocity v. NS/Wave; NS/LEE; NS.
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Figure 5.34: Time history at P1: (a) Density ρ, (b) Pressure p, (c) Velocity u (d)
Velocity v. NS/Wave; NS/LEE; NS.
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Figure 5.35: Time history at P2: (a) Density ρ, (b) Pressure p, (c) Velocity u (d)
Velocity v. NS/Wave; NS/LEE; NS.
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Figure 5.36: Time history at P3: (a) Density ρ, (b) Pressure p, (c) Velocity u (d)
Velocity v. NS/Wave; NS/LEE; NS.
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Figure 5.37: Pressure error history |p−pNS| at P0: NS/LEE; NS/Wave.

Figure 5.38: Pressure error history |p−pNS| at P1: NS/LEE; NS/Wave.
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Figure 5.39: Pressure error history |p−pNS| at P2: NS/LEE; NS/Wave.

Figure 5.40: Pressure error history |p−pNS| at P3: NS/LEE; NS/Wave.



Chapter 6

Optimal Control of Fluids Problem

In this chapter, we present some results for several optimal control cases with different

objective functionals. In §6.1, results are presented for the inviscid boundary control

of acoustic pulse reflection problem. In §6.2, we present some results for the viscous

boundary control of vortex rebound problem. The control objective is to minimize the

terminal kinetic energy (TKE). In §6.3, we present another classical viscous control

case, vortex shedding suppressing using the steady and unsteady boundary control.

6.1 Acoustic Pulse Reflection

In this section, we follow the third test case in Collis et al. [35], which focuses on the

optimal transpiration boundary control with high order finite difference method. In

this problem, a Gaussian acoustic pulse propagates towards the wall, then reflects back

into the observation region from the solid wall. The control objective is to minimize

the reflected acoustics in the observation region by using wall-normal suction/blowing

at the wall. It is defined as

J(g) = 1
2

∫ tf

t0

∫

Ωobs

α0(p − pa)2dx dt

+1
2

∫ tf

t0

∫

Γc

(
α1g

2
t + α2g

2
)
dΓ dt. (6.1)

where α0 = 106, α1 = 10−3, α2 = 10−4. The problem setup is very similar to that

in [35]. The computational domain is Ω = [−12, 12] × [0, 14] with periodic boundary

conditions enforced in the horizontal direction and a sponge nonreflecting boundary

treatment [40] in the vicinity of the top boundary. The control objective is identical

99
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as defined over Ωobs = [−5, 5]× [5, 9] and time horizon [2, 9] comprised of 700 uniform

time-steps ∆t = 0.01. The spatial domain is made up of 336 uniform Quad elements

with polynomial order p = 6 for each element. The control is only allowed over

the entire bottom boundary. The initial condition is a Gaussian acoustic pulse of

amplitude ε = 10−3 with standard deviation σ = 0.25, centered at mean height

x∗
2 = 8 above the wall,

v1 =0,

v2 = − ε

2
e− 1

2

(
x2−x∗

2
σ

)2

,

p − pa = − ρacav2,

ρ − ρa =
p − pa

c2
a

.

(6.2)

In (6.2), the subscript ’a’ denotes the ambient condition assumed to be a uniform

quiescent flow where ρa = Ta = 1 and ca = 2. The acoustic pulse propagates at

the ambient speed of sound ca = 2 towards the wall and at t0, the beginning of the

optimization horizon, it is located at x2 = 4. For the no control simulation, the pulse

reflects off the solid wall, passes through Ωobs, and reaches x2 = 10 at the final time

tf as in Figure 6.1.

6.1.1 Boundary Implementation

We take advantage of the linearity of this problem, the state boundary is enforced

using the linear characteristic variable formulation. Inspired by the idea in [35] us-

ing the isentropic/is-vorticity blowing for the boundary control, the characteristic

variables (5.1) are formed at the control boundary for the state and adjoint formu-

lation. For the state control boundary, depending on whether blowing or suction,

the boundary conditions are different. For the subsonic blowing �u�n < 0, which is

similar to the inflow boundary condition, three physical boundary conditions plus a



Chapter 6. Optimal Control of Fluids Problem 101

numerical boundary condition are required for the subsonic blowing. Here the isen-

tropic, iso-vorticity blowing is enforced on the control boundary. For the subsonic

suction, it is similar to the outflow boundary, only one physical boundary plus three

numerical boundaries are used. For the implementation for the boundary blowing

and suction, it is different from that in [35], which is based on the approach originally

formulated by J.Sesterhenn [106], who expresses the inviscid part of the equations

as a decomposition into several plane waves aligned with the numerical grid in an

attempt to merge finite difference with schemes based on compatibility equations.

Our approach is very similar to the Riemann variable extrapolation for the boundary

treatment as Thompson [116,117], Poinsot and Lele [96], where we actually define an

extra boundary side as in §3.2.2 and extrapolate the Riemann variable depending on

whether blowing or suction. For the adjoint boundary implementation, it basically

follows [35] using the adjoint characteristic variable formulation, where the adjoint

characteristic variables are formed at the boundary and extrapolated depending on

whether blowing or suction.

6.1.2 Results Analysis

Without control, Figure 6.1 shows the Gaussian acoustic pulse travelling history,

propagating towards the wall and reflecting back from the solid wall. The obser-

vation region is very quiet except for the passing of the reflecting pulse. Both the

state solution from high order finite difference [35] and the DG look very good with

very low dispersion and dissipation as expected. After the optimal control using the

boundary blowing/suction, the reflection from the wall is reduced in several orders

as in Figures 6.2. Significant acoustic reflection is reduced from both FD and DG.

As described in [35], this optimization does make the controlled wall transparent to

the incident acoustic pulse, where the central portion of the acoustic pulse between
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[−5, 5] has passed through the wall without noticeable reflection as in Figure 6.2.

Checking the optimization history in Figure 6.3, the optimization history from DG

looks much better than that of FD. Especially for the first several iterations, the

objective functional J decreases more steeply. It is a very good feature for the future

engineering application, which pays more attention to the first several optimization

loops. It might be attributed to the high accuracy from DG implementation, which

makes both state and adjoint solvers more accurate and leads better gradient infor-

mation. In order to investigate the performance of boundary control in minimicking

the nonreflecting boundary condition, we follow [35] and compare the different effects

from the three boundary treatments: 1)far field boundary, 2)sponge, and 3)boundary

control. We also compute Jobs = 1
2

∫ tf
t0

∫
Ωobsα0(p − pa)2dxdt for each case to estimate

the acoustics reflection. As in Table 6.1, we get slightly different quantities from

FD [35]. The amount of reflections in the observation region from sponge treatment

is smallest followed by the Riemann boundary treatment. Both two significantly re-

duce the acoustics reflection amount, compared with the optimal boundary control.

However, our optimal boundary control is still very effective, reducing the reflection

from 1.1031 to 2.6336 × 10−05. In [35], both the acoustics reflection from sponge and

Riemann extrapolation treatments is small, but not as good as ours. Our implemen-

tation with DG is more effective. Look at the time history of pressure fluctuations
∫

Ωobs
α0(p − pa)2dx in Figure 6.4, which is consistent with Table 6.1.

6.2 TKE control of Vortex Rebound

The optimal control problem in this section is the minimization of kinetic energy at fi-

nal time for a model problem consisting of two counter-rotating viscous vortices above

an infinite wall. Due to the self-induced velocity field, the two vortices propagate

downward and interact with the wall. For this vortex rebound model problem, wall
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normal suction and blowing is used to minimize cost functionals of Terminal Kinetic

Energy (TKE). As a model problem for viscous flow control, it has been investigated

extensively by Collis et al. [36,38] using the two approaches: optimize-discretize and

discretize-optimize. We choose this model problem as our validation case. The prob-

lem setup follows [36], the initial flow field is determined by the superposition of two

compressible viscous vortices [41] with some initial running to get rid of the tran-

sients because of the sudden superimposing of two vortices that doesn’t satisfy the

NS equations. Same as in [36], the computational domain is [−15, 15] × [0, 15]. The

side and top boundaries are assumed to be located far enough from the main flow

region, which are treated as the simple state boundary. This computational domain

is made up with 450 quadrilateral elements with polynomial p = 5 for each element.

For convergence study, we also increase p = 5 to p = 7, the overall optimization

history is similar, but both the state and adjoint solution get better resolved and we

get better gradient. Our control time window t0 = 5, tf = 40 and the control g is the

wall normal velocity along the bottom wall Γc. Our objective functional is defined as

min
g∈Gad

J(g) def= Jobs(U(g)) + Jreg(g)

=
1
2

∫

Ωobs

α(ρu2)t=tf dxdt +
∫ tf

t0

∫

Γc

(α1

2
‖gt‖2

2 +
α2

2
‖g‖2

2

)
dxdt

where α = 0.5, α1 = 0.002 with temporal regularization , and α2 = 0.005.

In all cases the optimization is started with zero control. We have done three runs,

the first is for p = 5 without temporal regularization α1 = 0, the second is for p = 5

with temporal regularization α1 = 0.002 and the third is for p = 7 with temporal

regularization α1 = 0.002.

Figure 6.5 shows the contours of kinetic energy for the uncontrolled flow and the

controlled flow from run using p = 5 without temporal regularization. For the uncon-

trolled flow, the vortices propagate toward the wall and interact with the solid wall,
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the vortices strength also becomes weak because of the viscous diffusion. Figure 6.6 is

the contour of vorticity for the controlled and uncontrolled flow. It shows that vortex

trajectory more clearly. The effect of the optimal control almost completely sucks

the vortices along the wall and reduces the kinetic energy by more than two orders

of magnitude.

As found in [36, 38], for TKE control in this case, without temporal regular-

ization, there is strong oscillation along the temporal direction in the control profile.

Figure 6.7(a) shows the control profile for our first run at p = 5 without temporal reg-

ularization. Including the temporal regularization, two runs at p = 5 with α1 = 0.002

and α1 = 0.05 are used. The control profiles in Figure 6.7(b) and 6.7(c) becomes quite

smooth, especially along the temporal direction. Increasing α1 = 0.002 to α1 = 0.05

for p = 5, there is slight difference in the control profile in the two figures. It indicates

that small temporal regularization term makes difference for transient optimization

problem. However, with the temporal regularization term, the optimization converges

more slowly than without it as shown in Figure 6.8 in the first several iterations. Over-

all the optimization history is pretty close. For the optimization convergence study,

the polynomial order has also been increased from p = 5 to p = 7 to check whether

increasing the state resolution will improve the optimization performance. From the

control profile in Figure 6.7(d) for p = 7 with temporal regularization, the control

profile is very similar to that at p = 5. Look at the optimization history at p = 7 in

Figure 6.8 and 6.9, it is almost identical to p = 5. It indicates that for this problem

current resolution at p = 5 is adequate. To further validate our optimization solver,

we do a detailed comparison with the results in Collis et al. [36,38] in Table 6.2. Our

optimization result is much better with lower resolution at p = 5.
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6.3 Cylinder Wake Control

In this section, optimal control of the unsteady wake behind a circular cylinder at

low Reynolds numbers is presented. Considerable research has been conducted for

cylinder wake control using a variety of approaches including distributed controls,

boundary control, and cylinder rotation (see e.g., Refs. [58, 74, 93, 109, 110]).

6.3.1 Steady Control

We consider steady suction/blowing on the entire cylinder surface as the control

and find an optimal spatial distribution of the control to drive the unsteady wake

at Re = 100 to match the steady wake at Re = 20, both at a freestream Mach

number of 0.3. Our problem setup is similar to that of Li et al. [74], although we

consider compressible flow with somewhat different boundary conditions, a slightly

modified objective function (described below), and our control is distributed over the

entire cylinder surface. The domain (see Figure 6.10) is rectangular Ω = [−3, 19] ×
[−3, 3.1] with the cylinder center located at (0, 0). A block structured mesh using 576

quadrilaterals was generated using a special purpose grid generator [115] and each

quadrilateral has polynomial order p = 4.

While the problem geometry described above is similar to that in Ref. [74], we use

non-reflecting boundary conditions on the top and bottom boundaries, while slip walls

were imposed in [74]. Since our formulation is compressible, we must also prescribe

a thermal boundary condition at the cylinder surface and the results presented here

use an adiabatic wall boundary condition. Additional details regarding the problem

setup, discretization, and state solutions can be found in [32].
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Objective functionals

Similar to that in [74], the objective functional for the current problem is defined

as a full flow field tracking problem where the controlled flow is driven toward the

steady laminar flow at Re = 20. Thus, our objective is to control the unsteady flow

at Re = 100 so that it approaches the steady flow at Re = 20 and we define our

objective function as

J =
1
2

∫

t

∫

Ω
((ρ − ρo)2 + (ρu − ρouo)2

+ (ρv − ρovo)2 + (ρE − ρoEo)2)dΩdt

+
ω1

2

∫

t

∫

Γc

g2dΓdt (6.3)

where ρo, ρouo, ρovo, ρoEo are the conservation variables of the target flow field (steady

flow at Re = 20) and g is the steady control (blowing/suction velocity) on the cylin-

der surface, Γc. Due to our compressible formulation, our objective function targets

differences in the conservation variables while Li et al. [74]target differences in the

velocity components. Similar to Li et al. [74] we define our time window, T , as one

shedding period. After obtaining an adequately converged optimal control distribu-

tion, we then continue advancing the solution using this steady control profile to

observe its long time influence on the flow.

Adjoint formulation

The gradient computation is based on the continuous adjoint formulation for the

Navier–Stokes equations described in [21, 33, 35, 36] and these adjoint equations are

discredited using DGM. Details of the formulation and implementation is in Appendix

A. The adjoint solution is used to compute the gradient of the objective functional

with respect to the control and a nonlinear conjugate gradient method in §4.4.1 is

used to update the control.
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Results

Figure 6.11 presents streamwise momentum contours for the steady laminar flow

state at Re = 20, which is our target solution. Figure 6.12 shows snapshots of the

uncontrolled flow at Re = 100 during one vortex shedding period which takes the

typical form of the Káramán vortex street.

Starting from the fully developed Káramán vortex street at Re = 100, we then

proceed to solve the optimal control problem described above and the convergence

history of the objective functional and norm of the gradient of the objective function

are shown in Figure 6.13. The majority of the reduction in J occurs in the first 4

iterations which is similar to observed in [74]. However, gradient of the objective

function continues to decrease with additional iterations and drops by more than two

orders of magnitude after 20 iterations (recall that it is the square of the gradient

norm that is plotted in Figure 6.13.)

Taking the control distribution after 20 iterations as the optimal solution, we then

continued the simulation for an additional 20 vortex shedding periods and snapshots

of streamwise momentum are shown in Figure 6.14. Clearly, the vortex shedding is

nearly suppressed by t = 40 (and computations for longer times verifies that shedding

is completely suppressed). These results are qualitatively similar to the incompressible

results of Li et al. [74].

The interests of practical applications of optimal control for flow around the cylin-

der usually involve the drag reduction CD. For a viscous flow, the total drag forces

comprise the pressure and skin friction resulted from the viscous stress along the

surface. Figure 6.15 shows the time history of the drag coefficient CD in the time

interval [50, 53](one shedding period 1T ). It shows that drag history for Re = 20

that is flat because it is the steady flow and the flow practically remains attached. In

the center of Figure 6.15, it is the drag history for Re = 100 without steady control,
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which shows the typical periodical shedding phenomenon under the low Re number.

With the optimal control, the drag for the flow at Re = 100 is reduced significantly.

With the optimal control profile obtained after the optimization converges, the flow

continues advancing 40T , its drag get further reduction as in Figure 6.16. Those

results presented demonstrate the effectiveness in improving the drag performance

by using the steady boundary blowing/suction around the cylinder. Besides the drag

reduction, Figure 6.17 also shows the lift coefficient for Re = 20.0 and Re = 100.0

with and without control, where the lift is mainly from the pressure difference on

the cylinder surface. From the figure, the lift fluctuation of the cylinder is reduced

successfully. Interestingly, the flow continues advancing with the optimal control, the

lift fluctuations becomes negative and flat, which seems to be from the steady control

profile that is not symmetric around the X axile as in Figure 6.19. We are really

interested in how the boundary control affects the cylinder wake. The flow pattern

displays the expected revolution as the Reynolds number increases. At higher vis-

cosity (Re < 40), the flow remains attached as in Figure 6.11, the wake behind the

cylinder comprises a steady recirculation region with two vortices symmetrically at-

tached to the cylinder. With the Reynolds number increasing, the size of the vortices

grows. When Re reaches less than 60, the trailing vortex street becomes unstable.

For Re is larger than 60, the vortex shedding occurs behind the cylinder because of

the flow instability. The attached vortices becomes asymmetric and are shed alter-

natively at Re > 60. In Figure 6.19, it is the optimal steady control profile, most

of the control around the cylinder is the blowing except some suction at bottom of

the cylinder. Around the top and bottom of the cylinder, the blowing becomes very

weak. At the leading edge, it is very flat and the blowing strength is low. Most

of the blowing happens around the trailing edge and makes the vortex suppression

effective. Such boundary profile is different from that reported by Li et al. [74] where
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the blowing mixed suction around the trailing edge. However, both show that the

control is most effective around the trailing edge. Actually, our steady control profile

in Figure 6.19 is pretty close to the control profile in the Min et al. [85] for their

pressure tracking problem, although their work is based on the suboptimal feedback

control procedure. Blowing is applied to the rear part and suction is to the upper

and lower parts of the cylinder surface.

6.3.2 Unsteady Control

In this section, we further consider the unsteady boundary control for this flow track-

ing problem. The objective functional is defined as

J =
1
2

∫

t

∫

Ω
((ρ − ρo)2 + (ρu − ρouo)2

+ (ρv − ρovo)2 + (ρE − ρoEo)2)dΩdt

+
ω1

2

∫

t

∫

Γc

g2dΓdt +
ω2

2

∫

t

∫

Γc

g,t
2dΓdt (6.4)

Without temporal regularization g,t, ω2 = 0. To better suppress the cylinder shedding,

we increase the optimal time window from 1T for steady control to 2T for unsteady

control in this case. In this study, we are interested in the effects of the unsteady

boundary control and the drag reduction. The problem formulation and derivation

is very similar to 6.3.1, except that the control g is defined in [t0, tf ] × Γc.

Looking at the snapshots with control and without control in Figure 6.20 and 6.21,

the shedding suppression is not so obvious, which is also shown in the optimization

history in Figure 6.22. After several optimization loop, there is about 25% reduction

for J . If excluding the penalty terms, the reduction is slightly bigger for Jo. Although

the reduction of the objective functional is not so significant, the drag reduction is

quite impressive as in Figure 6.23 that is the drag history of the cylinder shedding at

Re = 100 without control and with control (with/without temporal regularization).
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From the figure, it shows that after the control, the drag is reduced significantly.

With the temporal regularization term g,t included in the penalty, the drag get further

reduction. For the evolution of the lift coefficient in Figure 6.24, the lift fluctuation

becomes smaller after the unsteady boundary control. With temporal regularization

for the control, the fluctuation becomes much smaller.
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Method Control Riemann Sponge
FD 4.0e-05 6.4e-05 1.0e-05
DG 2.6e-05 6.6e-10 3.7e-10

Table 6.1: Comparison of acoustics reflection Jobs = 1
2

∫ tf
t0

∫
Ωobsα0(p−pa)2dxdt using

optimal control, Riemann boundary and sponge. Data for FD is from [35]

Run α1 α2 α3 J0 Jfinal TKEfinal

FD cont. 0.5 0.005 0.005 12.43 0.48 0.42
FD cont 0.05 0.005 0.005 12.43 0.37 0.32
FD cont 0 0.005 0.005 12.43 0.24 0.20
FD disc 0.05 0.005 0.005 12.43 0.25 0.20
FD disc 0 0.005 0.005 12.43 0.24 0.20
DG p5 0 0.005 0 11.65 0.092 0.053
DG p5 0.002 0.005 0 11.65 0.11 0.078
DG p7 0.002 0.005 0 11.65 0.13 0.096

Table 6.2: Comparison of objective function values for boundary control of terminal
kinetic energy with [36, 38]
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Figure 6.1: Contours of p − pa at instants t = 2, 4, 8, 9 without control, FD (left)
and DG (right). Data of FD is from [35]
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Figure 6.2: Contours of p−pa at instants t = 2, 4, 8, 9 with optimal control, FD(left)
and DG (right). Data for FD is from [35]
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Figure 6.3: Evolution of the Objective functional J from FD and DG: • result from
FD; result from DG.

Figure 6.4: Time history of pressure reflection: reflection from optimal control;
reflection using the Riemann boundary treatment; reflection using the

sponge.
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(b) Optimal control

Figure 6.5: Contours of KE at instants t = 0, 10, 20, 30, 40 without and with control,
No control (left) and Optimal control(right).
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(b) Optimal control

Figure 6.6: Contours of vorticity at instants t = 0, 10, 20, 30, 40 without and with
control, No control (left) and Optimal control(right).
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a) α1 = 0, α2 = 0.005, p = 5. b) α1 = 0.002, α2 = 0.005, p = 5.

c) α1 = 0.05, α2 = 0.005, p = 5. d) α1 = 0.002, α2 = 0.005, p = 7.

Figure 6.7: Optimal wall-normal velocity distributions for TKE control.
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Figure 6.8: Evolution of the objective functional J : J at p = 5, α1 = 0.005
and α2 = 0, J at p = 5, α1 = 0.005 and α2 = 0.002, J at p = 7,
α1 = 0.005 and α2 = 0.002.

Figure 6.9: Evolution of the objective functional Jobs: Jobs at p = 5, α1 = 0.005
and α2 = 0, Jobs at p = 5, α1 = 0.005 and α2 = 0.002, Jobs at p = 7,
α1 = 0.005 and α2 = 0.002.
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Figure 6.10: Element mesh for cylinder wake control.
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Figure 6.11: Contours of streamwise momentum, ρu, for the uncontrolled steady-
state solution at Re = 20.
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Figure 6.12: Contours of streamwise momentum, ρu, for one vortex shedding period
for the uncontrolled flow at Re = 100: (a) t = 0.2, (b) t = 0.8, (c) t = 1.4, and (d)
t = 2.
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Figure 6.13: Optimization history for the objective functional and the norm of
the gradient of the objective functional squared. The optimization time window is
one shedding period which corresponds to 2 time units: • gradient norm squared;

objective functional.
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Figure 6.14: Contours of streamwise momentum, ρu, for the controlled flow at
Re = 100: (a) t = 2, (b) t = 14, (c) t = 26, (d) t = 30, (e) t = 40. Note that
the steady optimal control is obtained over the first two time units, but is then used
throughout the remainder of the computation.



Chapter 6. Optimal Control of Fluids Problem 123

Figure 6.15: Time history of drag coefficients for Re = 20 and Re = 100 with/
without steady control: Re = 20 without control; Re = 100 without
control; Re = 100 with control.

Figure 6.16: Time history of drag coefficients with the flow advancing using the
optimal control.
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Figure 6.17: Time history of lift coefficients for Re = 20 and Re = 100 with without
steady control: Re = 20 without control; Re = 100 without control;
Re = 100 with control.

Figure 6.18: Time history of lift coefficients with the flow advancing using the
optimal boundary
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Figure 6.19: Optimal boundary control profile after 16 control iterations
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Figure 6.20: Contours of streamwise momentum, ρu, for the uncontrolled flow at
Re = 100: (a) t = 1.2, (b) t = 2.4, (c) t = 3.6, (d) t = 4.8, (e) t = 6.0.
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Figure 6.21: Contours of streamwise momentum, ρu, for the controlled flow with
temporal regularization at Re = 100: (a) t = 1.2, (b) t = 2.4, (c) t = 3.6, (d) t = 4.8,
(e) t = 6.0.
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Figure 6.22: Optimization history for the objective functional J and the pure ob-
jective Jobs, the optimization time window is two shedding period which corresponds
to 6 time units: Jobs without gt, Jobs with gt, J without gt, J
with gt
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Figure 6.23: Time history of drag coefficients for Re = 100 with/without control:
Re = 100 without control; Re = 100 with control, ω1 = 360, ω2 = 0;
Re = 100 with control, ω1 = 30, ω2 = 60.

Figure 6.24: Time history of lift coefficients for Re = 100 with/without control:
Re = 100 without control; Re = 100 with control, ω1 = 360, ω2 = 0;
Re = 100 with control, ω1 = 30, ω2 = 60.
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Figure 6.25: Optimal boundary control profile after 13 control iterations without
g,t

Figure 6.26: Optimal boundary control profile after 20 control iterations with g,t
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Figure 6.27: Optimal boundary control profile after 20 control iterations with g,t at
t = 6.0





Chapter 7

Optimal Control for the Coupling Systems

In Chapter 6, we successfully applied optimal control to several model problems:

Gaussian acoustic pulse reflection, TKE control of vortex rebounding and the vor-

tex shedding suppressing. However, these problems are all based on the single do-

main/model formulation. For complex flow problem including the multi-physics in-

side, such as BVI noise control problem we are interested in, single model implemen-

tations might not be so efficient. As formulated in §4.3, we have developed a novel

multi-domain/model framework for the optimal control of aeroacoustics problem. In

this chapter, we apply this multi-model framework to our interested BVI phenomena

to explore boundary control strategies for BVI noise reduction.

7.1 Problem Setup

The state solution for the BVI noise produced by the interaction of a vortex with a

Bell AH1 rotor blade in a uniform stream is presented in §5.4. It is solved with the

full field Navier–Stokes equations, multi-model NS/LEE and NS/Wave coupling, all

of which give good solution and have excellent agreement. It shows that our multi-

model simulation is quite feasible for this BVI problem with excellent accuracy for the

far field acoustics capturing. To extend such approach to our interested BVI control

problem in Figure 7.1, the computational domain is decomposed into three parts. In

the middle the viscous Navier–Stokes equations are applied to model the nonlinear

interaction between the vortex and rotor blade. In the upper and lower region the

linearized Euler equations are used to capture the scattered acoustics. Motivated by

the success of Collis et al. [33] using the boundary blowing/suction for the optimal

133
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control of aeroacoustic noise generated by cylinder vortex interaction, we use the time-

and space-dependent distribution of rotor surface normal velocity (suction/blowing)

as our control mechanism. Nakamura’s work [89] indicates that the leading edge of

the rotor blade plays a very important role in the interaction process. Through the

CFD simulation, Romuald Morvant [88] also shows that BVI is primarily leading-

edge phenomenon and the compressibility waves which propagate upstream below

and above the rotor are generated from the large flow deflection at the leading edge.

He also pointed out that compressibility waves tend to dominate the overall noise

in the subsonic flow. Given the computational expense for optimal control of such

complex problem, we devise our optimization problem only to capture and reduce the

noise from the interaction at the leading edge. The initial condition is well defined in

§5.4. It is important to start the optimization time window at a time when the initial

transient has left the domain and the local mesh resolution is adequate to resolve the

vortex. We run the computation after the vortex superposition for 69000 steps to

t = 1.36 to make sure that the transients associated with the superposition has left

the domain. The optimal time window is defined as t0 = 1.36 when the vortex is near

the leading edge, tf = 2.96 when the vortex has just passed the trailing edge. Since

the BVI noise is strongest at 30o from the negative x-axis, our observation region

Ωobs in our objective functional is defined in the upstream below the rotor blade as

in Figure 7.1. We are primarily interested in reducing the amplitude of the noise in

region of Ωo and our control objective is defined as

J(g) = 1
2

∫ tf

t0

∫

Ωobs

α0(p − pa)2dx dt

+1
2

∫ tf

t0

∫

Γc

(
α1g

2
t + α2g

2
)
dΓ dt. (7.1)

where pa is the ambient or steady mean-flow pressure distribution, the wights α0 =

10000.0, α1 = 0 and α2 = 1.0. Our objective is to minimize the acoustic pressure
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intensity in the rectangle area depicted in Figure 7.1 within some reasonable time

window. The control is exerted on the surface of the rotor blade and is chosen to

be the time and position dependent wall–normal velocity. In this problem setup, our

control is along the whole blade. Following [33], four stations are placed above and

below the rotor blade to record the time history of pressure fluctuations. Stations

P1 and P2 are located in the LEE domain above the blade to capture the upward

acoustics. Stations P3 and P4 are defined inside the observation region Ωo.

7.2 Result and Analysis

7.2.1 Noise Reduction

Figure 7.2 shows the pressure contours at different time levels. The intensity of acous-

tic pressure inside the observation region has been clearly reduced. It is seen more

clearly in Figure 7.2 at t = 2.16 and t = 2.56. Quantitatively after 3 iterations, J is

reduced from 0.91 to 0.058 and the sound level in the observation region is reduced

about 12dB. However, the sound level above the rotor blade upstream seems to get

strengthened as in Figure 7.2. Those are more clearly shown in Figure 7.3, which

is the pressure fluctuation history at stations P1, P2, P3 and P4. Compared with

the uncontrolled pressure fluctuation at those four stations, the pressure fluctuation

amplitude for P3 and P4 inside the observation region Ωo is noticeably reduced. How-

ever, at the end of the pressure fluctuation history at P4, the pressure fluctuation

amplitude slightly increased. It might be from the trailing edge waves when the con-

trol has not been able to take effect because of our small optimization window. The

pressure fluctuation amplitude in P1 and P2 above the blade becomes larger. Such

finding has also been reported in [33]. Look at the pressure fluctuations at those

sensing stations for the no-control and controlled flow in Figure 7.3, the control only

takes effect after the certain time period as in all stations. For station P1, the effect
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of the control is not felt until t = 1.76. It takes slightly longer for station P2 feel the

effect of the control. The same are also true for stations P3 and P4. The reason is

that the information travels at the speed of the sound relative to the fluid and there

is a delay between the start of control at t = 1.36 and any corresponding change at

the stations.

7.2.2 Adjoint Analysis

To better understand the control process, the evolution of adjoint variable λ4 is shown

in Figure 7.4, which contributes to the gradient information for the control update.

This adjoint quantity is like an adjoint wave and contributed by the pressure fluctua-

tion in the objective functional. As the adjoint wave moves the upward and interacts

with the rotor blade, eventually takes effect on the control region along the blade

surface. Such adjoint wave interacts with the rotor blade and dominates the gradi-

ent around the rotor blade. Given this qualitative behavior of the adjoint solution,

such interaction between the control and the flow field alters the far-field acoustics

delicately by changing the near-field acoustic source. Figure 7.4 also shows that the

adjoint solution around the coupling surface is quite smooth, indicating that our

coupling approach for the adjoint equations is working properly.

7.2.3 Discussion

In order to understand the underlying mechanism of noise reduction, several impor-

tant BVI parameters are checked carefully. Interestingly, the most important two

characteristic for BVI noise: vortex strength and miss distance, are barely changed

as shown in Figure 7.5. Without control, the vortex strength changes from -5.0144

to -4.12657 after passing the blade. With control, the vortex strength changes from

-5.0144 to -4.10883. It indicates that the control doesn’t appear to change the vortex
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trajectory or vortex strength. It is not certain whether it follows the same control

mechanism found by Collis et al. [33] from the study of the cylinder vortex interaction

that the acoustics from the control interactions with the mean flow conceals the BVI.

However, it is very wise to look at its vorticity field. The vorticity field with the

control is deducted with the one without control and the difference of vorticity field

around the rotor blade is shown in Figure 7.6. Figure 7.6 shows that the boundary

blowing/scution along the blade does introduce the vorticity to the flow field, espe-

cially the flow field around the blade. Such vorticity is not negligible, which may be

the major source contributing to our control mechanism. Checking the unsteady drag

coefficient which usually comprises the pressure and skin friction resulted from the

viscous stress along the surface as in Figure 7.7, the drag gets slight increase in the

first half optimization time window, which seems to be mainly from the viscous stress

because of the control exerted along the rotor blade. In the second half window, the

drag is recovering back as the control becomes weaker. We are more interested in the

lift coefficient Cl, which is mainly from the pressure difference on the blade surface.

As reviewed by Peake and Crighton [94], the reduction of the unsteady lift on the

blade during the interaction would consequently, at least at low Mach number, also

reduce the noise. Such mechanism has led to the use of the oscillating trailing edge

flaps to reduce the unsteady lift on the blade as in [65,90,107] and incorporating the

suction/blowing on the blade surface [56, 71]. Look at the lift history in Figure 7.8,

the lift does get noticeably reduction, although there is slight increase in the end. The

lift fluctuations caused by blade vortex interaction are responsible for the impulsive

noise. Such reduction in the lift fluctuations implies the noise reduction. There is

a significant reduction in the temporal gradient of lift leading to a reduction in BVI

sound levels.It is quite consistent with our control result in Figure 7.3.
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7.3 Summary

We believe that our work is the first model-based effort to use optimal control theory

to attempt the BVI noise control based on the relatively realistic BVI configuration.

Our numerical simulation and its control is also based on an efficient and novel multi-

domain/model method. As we have found, such approach works quite well for our

state calculation and its adjoint computation. The results obtained in the present

work appear to be quite promising. It suggests that the boundary blowing and suction

is quite feasible means to reduce blade-vortex interaction (BVI) noise and also shows

that optimal distributions of wall-normal suction and blowing can reduce the BVI

noise significantly. In our current case, when the objective functional is set to target

only the forward scattered BVI sound, a 12dB reduction is obtained. The vortex

strength and trajectory get barely changed. However, as we observed, the optimal

control does alter the interaction of the vortical and potential fields, which is the

source of BVI noise. One of the impact from such interaction is the slight increase of

drag in the first half of the optimization window and lift reduction all over the time

window. Although those preliminary results are quite promising, further investigation

is required. As our first attempt, the control is distributed all over the blade surface.

It is not a good practice because of the cost and the singularity around the trailing

edge. As we know that BVI is primarily leading-edge phenomenon, our further work

is to investigate the control mechanism around the leading edge.
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Figure 7.2: Contours of scattered pressure p − pa at instants t = 1.36, 1.76, 2.16,
2.56, 2.96 for no control (left) and optimal control (right).
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(a) (b)

(c) (d)

Figure 7.3: Time history of pressure at observations (a) station 1, (b) station 2, (c)
station 3, (d) station 4: no control; optimal control.
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Figure 7.4: Adjoint variable λ4, the time goes backward in the adjoint solution (a)
t=2.56, (b) t=2.16, (c) t=1.76, (d) t=1.40
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Figure 7.5: Vortex trajectories with/without control during the interaction.
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Figure 7.6: Vorticity field w − w0(a) t=1.76, (b) t=2.16, (c) t=2.56, (d) t=2.96
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d

Figure 7.7: Time history of drag coefficients for BVI noise control with/ without
control: no control; optimal control.

l

Figure 7.8: Time history of lift coefficients for BVI noise control with/ without
control: no control; optimal control



Chapter 8

Conclusions and Future Work

8.1 Conclusions

The use of on-blade normal velocity actuation for controlling the impulsive noise aris-

ing from blade-vortex interaction (BVI) has been investigated using the novel multi-

domain multi-model method. Exploiting the multiphysics structure of this problem,

nonlinear acouqstics source plus linear acoustics propagation, we have explored and

developed a discontinuous Galerkin (DG) based multi-domain multi-model method

for optimal control of aeroacoustics. In this approach the coupling of multi-domains

(near-field and far-field) and multi-models is achieved by weakly enforcing continu-

ity of normal fluxes across a coupling surface. We have developed this approach for

different multi-model coupling problems for a single-grid framework. Also, we have

extended the multi-model approach to the control framework. To be more explicit, in

solving our adjoint equations, we now weakly enforce the continuity of normal adjoint

fluxes across a coupling surface.

Our numerical method has been validated using a suite of model acoustics and

optimal control problems. Excellent agreement with reference computations and/or

analytical solutions have been obtained (refer to Chapters 5 and 6).

Given the success of validation of both the state calculation and model flow control

problems, we extend the multi-domain, multi-model framework for the optimal control

of complex acoustics problems, namely, the BVI phenomena. In doing so, we explore

boundary control strategies for BVI noise reduction. Our results demonstrate that

DG based multi-model method is a viable tool for obtaining quantitatively accurate

results for acoustics control using wall normal blowing/suction. Here, for the current
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BVI problem, we couple the near field and far field with a NS and LEE, respectively.

And, we employ boundary blowing/suction around the rotor blade as our control

mechanism.

For the conditions described in Chapter 7, we obtain a 12dB reduction in sound

pressure level when the objective function targets the downward radiated BVI noise.

Interestingly, the optimal control has negligible effect on both the vortex strength and

trajectory, however, it does alter the interaction of the vortical and potential fields

that is the source of BVI noise. While this results in a slight increase in drag, there is

a significant reduction in the temporal gradient of lift leading to a reduction in BVI

noise levels.

8.2 Future Work

The use of high resolution in the near-wall region to resolve boundary layers imposes

stringent restrictions on the time step size using explicit time advancement. Addi-

tionally, this limits our optimal time window to short intervals. Therefore, to reduce

the computational cost and cover a reasonable optimal time window, an implicit time

scheme is needed, at least for the viscous flux evaluation. Thus, we can employ larger

time steps to advance the flow resulting in reduced computational cost.

Meanwhile, a practical way to reduce computational cost, in the interim, is to

introduce instantaneous control following the approach of [12,20]. However, it will not

lead to the same control that would be obtained by optimizing over the entire control

time window. Furthermore, this introduces large discontinuous control inputs at the

beginning of the each control window. Alternatively, we can possibly overcome the

time step restriction by resorting to inviscid boundary control as [35]. This approach

[35] has severe physical constraints for the inviscid blowing. For the current BVI

problem, besides viscous equations, inviscid equations and full potential equation have
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also been successfully used to model the nonlinear interaction. However, whether this

BVI noise control problem can be modeled using inviscid or full potential equations

with the wall normal blowing and suction remains an open question.

As for our current multi-model coupling, in addition to the domain and model

(equations) coupling, we can introduce time scale coupling [105]. Upon closer exam-

ination of the current multi-scale problem (BVI), the aeroacoustic wavelength in the

far-field is in general much larger than the wavelength of the fluid flow phenomena in

the near-field whose acoustics source are normally eddies with a much smaller struc-

ture. Moreover, these eddies in the near-field advect with the fluid flow, whose speed

is usually slower than the far-field sound speed. As a result, the local CFL number in

each domain is different. The Use of local time-stepping in the near-field and far-field

may lead to improved computational efficiency.

Finally, during optimization, it is found that our current optimization algorithm

(nonlinear conjugate gradient method) converges slowly. A significant portion of the

computational effort is expended during the line search procedure. Here, the explo-

ration of other quasi-Newton based optimizers as a means to improve convergence

has the potential to reduce computational cost.





Appendix A

Derivation of Adjoint Equations

In this chapter, we derive the analytical adjoint equations for the optimal control of

the inviscid and viscous flow. The optimal control framework is based on the adjoint

methods for controlling the unsteady two-dimensional compressible Euler/Navier–

Stokes equations. The adjoint problem formulation is from the continuous adjoint(i.e.

optimize-discretize) approach, defining a Lagrange multiplier first, then getting the

corresponding adjoint system and gradient information through the variation of u, U

and g as in [36, 108] and Jameson’s work [61, 62]. The resulting adjoint system will

be used to determine the sensitivity of the flow to the applied control, which is the

center of control update with a gradient based optimization algorithm.

A.1 Adjoint Euler and Navier–Stokes Equations

and Gradient Equations

The following derivation is based on the variation formulation,i.e., define a Lagrange

multiplier, then variation of the state u, U and control g to get the adjoint equation

and the gradient equation. For the derivation purpose, the cost functional is defined

as

J(U) = J(U, g) (A.1)

and as the typical case, the compressible Navier–Stokes equations3.1a is used as the

state governing equations.

151



152 Appendix A. Derivation of Adjoint Equations

We define the Lagrangian as

L(U, g, λ, λ0) = J(U, g) +
∫ tf

t0

∫

Ω
λT (U(u)t + Fi,i − Fv

i,i)dx

+
∫

Ω
(λ0)T (U − U0)dx. (A.2)

where inviscid flux F, viscous flux Fv are defined in 2.

The final variational form becomes

L(U, g, λ, λ0) = J ′(U, g) +
∫ tf

t0

∫

Ω
λT (U′(u)t + Fi,i

′ − Fv
i,i

′)dx

+
∫

Ω
(λ0)TU′dx. (A.3)

We associate adjoint variables

λ =

⎛

⎜
⎜
⎜
⎜
⎝

λ1

λ2

λ3

λ4

⎞

⎟
⎟
⎟
⎟
⎠

,

with the NS equations 2.4 or Euler equations 2.1.

Through the variation with U and g we will get the corresponding adjoint equation

and gradient equation. From the equation formulation, especially the viscous flux

term Fv, the variation with primitive variables u will be easier for the derivation.

To derive the adjoint equation, adjoint boundary condition and gradient equation,

we use the variation of the primitive u for convenience, but in the end we write the

adjoint equation based on the variation of conservative U, which is consistent with

the state discretization variable U. It is very convenient to transform between u′ and

U′ by using u′ = M−1U′, where M is the Jacobian between u and U.
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Regarding the objective J(U, g), it is usually defined as

Ĵ(g) =
1
2

∫

Ω0

Jtf dx +
1
2

∫ tf

t0

∫

Ω0

J(t)dx

+
∫ tf

t0

∫

Γc

(α1

2
‖gt‖2

2 +
α2

2
‖∇g‖2

2 +
α3

2
‖g‖2

2

)
dx. (A.4)

where α1, α2, α3 > 0. For the treatment of those penalty terms gt, ∇g and g, [37,38]

give very good discussion, which we will follow and discuss in other place.

For convenience, J is defined as

Ĵ(g) =
1
2

∫ tf

t0

∫

Ω0

J(t)dx +
∫ tf

t0

∫

Γc

α3

2
‖g‖2

2dx. (A.5)

The variation form becomes

δLU = J ′ +
∫ tf

t0

∫

Ω
λT (U(u)′

t + Fi,i
′ − Fv

i,i
′)dx +

∫

Ω
λ0

TU′dx (A.6)

∫

Ω
λ0T

U′dx +
∫ tf

t0

∫

Ω
λT (U′

,t + Fi,i
′ − Fv

i,i
′)dx

=
∫

Ω
U′T (λ0 − λ|t0)dx +

∫

Ω
U′T λ|tf dx

−
∫ tf

t0

∫

Ω
U′(λ,t + A1

T λ,x + A2
T λ,y)dx

+
∫ tf

t0

∫

Ω
(Fv

i
T ′

λ,x + Fv
2
T ′

λ,y)dx

+
∫ tf

t0

∫

Γ
(n1F1

T ′
+ n2F2

T ′
)λdx

−
∫ tf

t0

∫

Γ
(n1Fv

1
T ′

+ n2Fv
2
T ′

)λdx (A.7)

where Ai = ∂F
∂U as defined also in the following appendix.
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To simplify A.7, the following terms are defined, respectively.

I1 =
∫ tf

t0

∫

Γ
(n1F1

T ′
+ n2F2

T ′
)λdx

I2 =
∫ tf

t0

∫

Ω
(Fv

i
T ′

λ,x + Fv
2
T ′

λ,y)dx

I3 = −
∫ tf

t0

∫

Γ
(n1Fv

1
T ′

+ n2Fv
2
T ′

)λdx

For I1,

I1 =
∫ tf

t0

∫

Γ
(niFi

T ′
)λdx

=
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx +

∫ tf

t0

∫

Γc+Γs

(niFi
T ′

)λdx

=
∫ tf

t0

∫

Γ∞
UT ′(niAi

T λ)dx +
∫ tf

t0

∫

Γc+Γs

(niFi
T ′

)λdx (A.8)

where Γ∞ is the far field boundary, Γs is the solid wall(isoflux or isothermal), Γc is

the control boundary, isoflux or isothermal wall.

Considering the boundary condition at the solid wall Γs where

u1 = 0

u2 = 0

T = T0 or T,xi
ni = 0 ∀Γs (A.9)

and the control boundary condition

Vs = −u1n2 + u2n1 = 0

Vn = u1n1 + u2n2 = g

T = T0 or T,xi
ni = 0 ∀Γc (A.10)
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so

∫ tf

t0

∫

Γc+Γs

(niFi
T ′

)λdx

=
∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
Vn[ρ ρu1 ρu2 ρE]T ′ + Vn

′[ρ ρu1 ρu2 ρE]T

+p′[0 n1 n2 Vn]T
)
λ + pVn

′λ4dx

=
∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
VnUT ′ + Vn

′UT + p′[0 n1 n2 Vn]T
)
λ + pVn

′λ4dx (A.11)

and

I1 =
∫ tf

t0

∫

Γ∞
(niFi

′T )λdx

+
∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
VnUT ′

+ Vn
′UT + p′[0 n1 n2 Vn]T

)
λ + ρVn

′λ4dx(A.12)

For I2

I2 =
∫ tf

t0

∫

Ω
(Fv

i
T ′

λ,x + Fv
2
T ′

λ,y)dx (A.13)

Taking advantage of the simplicity of viscous term using the primitive variable u,

Fv
1
′ = D1u

′ + K1
1ux1

′ + K1
2ux2

′ (A.14)

Fv
2
′ = D2u

′ + K2
1ux1

′ + K2
2ux2

′ (A.15)

where Di = ∂Fv
i

∂u
and Ki

j = ∂Fv
i

∂uxj
.
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I2 =
∫ tf

t0

∫

Ω
(Fv

i
T ′

λ,x + Fv
2
T ′

λ,y)dx

=
∫ tf

t0

∫

Ω
uT ′

(Di
T λxi

)dx +
∫ tf

t0

∫

Ω
(Ki

juxj

′)T λxi
dx

=
∫ tf

t0

∫

Ω
uT ′(Di

T λxi
)dx −

∫ tf

t0

∫

Ω
uT ′(Ki

j

T
λxi

)xj
dx

+
∫ tf

t0

∫

Γ
uT ′

(njKi
j
T
λxi

)dx (A.16)

where

(Ki
juxj

′)T λxi
= (uT ′

Ki
j
T
λxi

),xj
− uT ′

(Ki
j
T
λxi

)xj

For I3,

I3 = −
∫ tf

t0

∫

Γ
(n1Fv

1
T ′

+ n2Fv
2
T ′

)λdx

= −
∫ tf

t0

∫

Γ

(
uT ′

niDT
i + uT

xj

′
niKi

j
T
)

λdx (A.17)

Considering A.12, A.16 and A.17,

∫

Ω
U′T λ0dx +

∫ tf

t0

∫

Ω
λT (U′

,t + Fi,i
′ − Fv

i,i
′)dx

=
∫

Ω
U′T (λ0 − λ|t0)dx +

∫

Ω
U′T λ|tf dx

−
∫ tf

t0

∫

Ω
UT ′(λ,t + Ai

T λxi
)dx +

∫ tf

t0

∫

Ω
u′T [(Di

T λxi
) − [Ki

j

T
λxi

]xj
]dx

+
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx +

∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
VnU′T + Vn

′UT + p′[0 n1 n2 Vn]T
)

λ + ρVn
′λ4dx

+
∫ tf

t0

∫

Γc+Γs

u′T
(
njKi

j
T
λxi

)
dx

−
∫ tf

t0

∫

Γc+Γs

(
u′T niDT

i + uT
xj

′
niKi

j
T
)

λdx (A.18)
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For the volume integra at Ω, from

∫

Ω
U′T (λ0 − λ|t0)dx

we get the adjoint final compatibility relation λ0 − λ|t0 , and our adjoint initial con-

dition λ|tf , which is also be dependent on the variation of J .

Considering U′ = Mu′, which leads to u′T = U′TM−T , the adjoint equation

becomes

−
∫ tf

t0

∫

Ω
UT ′(λ,t + Ai

T λxi
)dx +

∫ tf

t0

∫

Ω
uT ′

(
(Di

T λxi
) − (Ki

j
T
λxi

)xj

)
dx

= −
∫ tf

t0

∫

Ω
UT ′

(
λ,t + Ai

T λxi
+ M−T (−Di

T λxi
+ (Ki

j
T
λxi

)xj
)
)

dx (A.19)

The adjoint equation becomes

−λ,t − Ai
T λxi

− M−T (−Di
T λxi

+ (Ki
j
T
λxi

)xj
) = S (A.20)
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The boundary terms

IB =
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx

+
∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
VnUT ′ + Vn

′UT + p′[0 n1 n2 Vn]T
)

λ + pVn
′λ4dx

+
∫ tf

t0

∫

Γ
uT ′

(njKi
j
T
λxi

)dx −
∫ tf

t0

∫

Γ

(
uT ′

niDT
i + uT

xj

′
niKi

j
T
)

λdx

=
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx

+
∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
VnUT ′ + Vn

′UT + p′[0 n1 n2 Vn]T
)

λ + pVn
′λ4dx

+
∫ tf

t0

∫

Γ
uT ′

(
njKi

j
T
λxi

− niDT
i

)
λ + uT

xj

′
niKi

j
T
λdx

= I∞ + Ic + Iv (A.21)

Assume that there is no viscous effect in the far field as in [108], which is reason-

able, so the Γ = Γc + Γs for the viscous boundary integral.

Define

I∞ =
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx (A.22)

Ic =
∫ tf

t0

∫

Γs

p′[0 n1 n2 0]T λdx

+
∫ tf

t0

∫

Γc

(
VnUT ′ + Vn

′UT + p′[0 n1 n2 Vn]T
)

λ + pVn
′λ4dx

=
∫ tf

t0

∫

Γc

Vn
′(UT λ + pλ4)dx +

∫ tf

t0

∫

Γs

p′(n1λ2 + n2λ3)dx

+
∫ tf

t0

∫

Γc

VnU′T λ + p′(n1λ2 + n2λ3 + Vnλ4)dx (A.23)
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Introduce

Vs = −u1n2 + u2n1

Vn = u1n1 + u2n2

we get

u1 = Vnn1 − Vsn2

u2 = Vnn2 + Vsn1

where the outward normal vector �n = (n1, n2) and tangential vector �s = (−n2, n1).

VnU′T λ = Vnu′TMT λ

= Vn

⎛

⎜
⎜
⎜
⎜
⎝

ρ′

−n2Vs
′ + n1Vn

′

n1Vs
′ + n2Vn

′

T ′

⎞

⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎝

λ1 + λ2u1 + λ3u2 + λ4E

ρλ2 + ρu1λ4

ρλ3 + ρu2λ4
ρλ4

γ(γ−1)

⎞

⎟
⎟
⎟
⎟
⎠

= Vn

⎛

⎜
⎜
⎜
⎜
⎝

0

−n2Vs
′ + n1Vn

′

n1Vs
′ + n2Vn

′

0

⎞

⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎝

λ1 + λ2u1 + λ3u2 + λ4E

ρλ2 + ρu1λ4

ρλ3 + ρu2λ4
ρλ4

γ(γ−1)

⎞

⎟
⎟
⎟
⎟
⎠

+Vn

⎛

⎜
⎜
⎜
⎜
⎝

ρ′

0

0

T ′

⎞

⎟
⎟
⎟
⎟
⎠

T ⎛

⎜
⎜
⎜
⎜
⎝

λ1 + λ2u1 + λ3u2 + λ4E

ρλ2 + ρu1λ4

ρλ3 + ρu2λ4
ρλ4

γ(γ−1)

⎞

⎟
⎟
⎟
⎟
⎠

(A.24)

where E = T
γ(γ−1) + 1

2(u1
2 + u2

2).

Consider

UT λ = ρλ1 + ρVsλs + ρVnλn + ρEλ4 ∀Γc
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So

Ic =
∫ tf

t0

∫

Γc

Vn
′(UT λ + pλ4)dx +

∫ tf

t0

∫

Γs

p′(n1λ2 + n2λ3)dx

+
∫ tf

t0

∫

Γc

VnUT ′
λ + p′(n1λ2 + n2λ3 + Vnλ4)dx

=
∫ tf

t0

∫

Γc

Vn
′(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρVn

2)λ4)dx

+
∫ tf

t0

∫

Γc

Vs
′(ρVsVnλ4 + ρVnλs)dx +

∫ tf

t0

∫

Γs

p′(n1λ2 + n2λ3)dx

+
∫ tf

t0

∫

Γc

p′(n1λ2 + n2λ3 + Vnλ4)dx

+
∫ tf

t0

∫

Γc

ρ′(λ1 + λ2u1 + λ3u2 + λ4E)Vndx

+
∫ tf

t0

∫

Γc

T ′ ρλ4

γ(γ − 1)
Vndx (A.25)

For convenience, here we use the simple objective functional with its variation as

Ĵ ′(U, g) =
∫ tf

t0

∫

Ω
U′T rdx +

∫ tf

t0

∫

Γc

g′α3gdx (A.26)

A.1.1 Adjoint Equation and Boundary Condition for Euler

If ignoring the viscous terms Fv, from A.20 we obtain

−λ,t − Ai
T λxi

= S (A.27)

From the Lagrangian A.3, cost functional A.26 and the convective boundary A.25,
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we get

L′(U, g, λ, λ0) =
∫

Ω
U′T (λ0 − λ|t0)dx +

∫

Ω
U′T λ|tf dx

+
∫ tf

t0

∫

Ω
UT ′−λ,t − Ai

T λxi
+ rdx

+
∫ tf

t0

∫

Γc

(g′α3g)dx

+
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx

+
∫ tf

t0

∫

Γc

V ′
n(ρλ1 + ρVsλs + 2ρVnλn

+(p + ρE + ρV 2
n )λ4)dx

+
∫ tf

t0

∫

Γc

V ′
s (ρλ4VsVn + ρVnλs)dx

+
∫ tf

t0

∫

Γs

p′(n1λ2 + n2λ3)dx

+
∫ tf

t0

∫

Γc

p′(n1λ2 + n2λ3 + Vnλ4)dx

+
∫ tf

t0

∫

Γc

ρ′(λ1 + λ2u1 + λ3u2 + λ4E)Vndx

+
∫ tf

t0

∫

Γc

T ′ ρλ4

γ(γ − 1)
Vndx

Gradient

Assuming the control is the normal velocity Vn at the boundary Γc, with only con-

tribution from regularization term in A.26, the gradient equation with-regard-to Vn

is

∇J = α3g

+(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρV 2
n )λ4) (A.28)
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Inviscid Solid Wall

For the adjoint wall boundary condition, because we only have one physical constraint,

normal velocity Vn = 0, all other constraints, such as Vs, p, ρ, T , are loose. We

get the following adjoint wall boundary condition from p′ at the wall Γs,

λn = n1λ2 + n2λ3 = 0 (A.29)

Blowing/Suction on the Inviscid Wall

With regarding to subsonic boundary blowing and suction on the control boundary, we

treat them as the inflow boundary for the blowing, outflow boundary for the suction

as in [34,35]. According to the characteristic relationship for the Euler equation [57],

three physical boundaries is required for the subsonic inflow boundary(blowing) and

one physical boundary condition required for the outflow boundary(suction). 6.1 gives

a successful case which is built on the linear characteristic boundary implementation

due to its linear nature of that acoustics problem. However, We still have difficulty in

finding the suitable physics constraints to make our optimization procedures stable

using the boundary blowing/suction, which becomes our future research direction.

A.1.2 Adjoint Equation and Boundary Condition for Navier–

Stokes

Assume no viscous effect at far field boundary Γ∞, we focus on the viscous boundary

derivation.
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Introduce natural coordinate system (s, n) and

λs = −n2λ2 + n1λ3

λn = n1λ2 + n2λ3

λs,s = −n2λs,x1 + n1λs,x2

λs,n = n1λs,x1 + n2λs,x2

λn,s = −n2λn,x1 + n1λn,x2

λn,n = n1λn,x1 + n2λn,x2

λ4,s = −n2λ4,x1 + n1λ4,x2

λ4,n = n1λ4,x1 + n2λ4,x2

τsn = τ21n
2
1 + τ22n1n2 − τ11n1n2 − τ12n

2
2

τnn = τ11n
2
1 + τ12n1n2 + τ21n1n2 + τ22n

2
2
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we get

L′(U, g, λ, λ0) =
∫

Ω
U′T (λ0 − λ|t0)dx +

∫

Ω
U′T λ|tf dx

+
∫ tf

t0

∫

Ω
UT ′−λ,t − Ai

T λxi
− M−T (−Di

T λxi
+ Ki

j
T
λxixj

) + rdx

+
∫ tf

t0

∫

Γc

(g′g)dx +
∫ tf

t0

∫

Γ∞
(niFi

T ′
)λdx

+
∫ tf

t0

∫

Γc

V ′
n(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρV 2

n )λ4)dx

+
∫ tf

t0

∫

Γc+Γs

V ′
n

1
Re

(λ(
∂λs

∂s
− λn

R
+ Vs

∂λ4

∂s
)

+(λ + 2µ)(
∂λn

∂n
+ Vn

∂λ4

∂n
) − τnnλ4)dx

+
∫ tf

t0

∫

Γc+Γs

V ′
n

1
Re

(
λ

R
(λn + Vnλ4))dx

+
∫ tf

t0

∫

Γc

V ′
s (ρλ4VsVn + ρVnλs)dx

+
∫ tf

t0

∫

Γc+Γs

V ′
s

1
Re

µ(
∂λn

∂s
+

∂λs

∂n
+

λs

R

+Vn
∂λ4

∂s
+ Vs

∂λ4

∂n
− τsn

µ
λ4)dx

+
∫ tf

t0

∫

Γc+Γs

V ′
s

1
Re

−µ

R
(λs + Vsλ4)dx

+
∫ tf

t0

∫

Γc+Γs

∂V ′
n

∂s

−µ

Re
(λs + Vsλ4)dx

+
∫ tf

t0

∫

Γc+Γs

∂V ′
n

∂n

−(2µ + λ)
Re

(λn + Vnλ4)dx

+
∫ tf

t0

∫

Γc+Γs

∂V ′
s

∂s

−λ

Re
(λn + Vnλ4)dx

+
∫ tf

t0

∫

Γc+Γs

∂V ′
s

∂n

−µ

Re
(λs + Vsλ4)dx

+
∫ tf

t0

∫

Γc

ρ′(Vn(λ1 + Vsλs + Vnλn + λ4E) +
T

γ
(λn + Vnλ4)dx

+
∫ tf

t0

∫

Γs

ρ′ T

γ
λndx

+
∫ tf

t0

∫

Γc

T ′(Vn
ρλ4

γ(γ − 1)
+

k

RePr(γ − 1)
∂λ4

∂n
+

ρ

γ
(λn + Vnλ4))dx

+
∫ tf

t0

∫

Γs

T ′(
k

RePr(γ − 1)
∂λ4

∂n
+

ρ

γ
λn)dx

+
∫ tf

t0

∫

Γc+Γs

∂T ′

∂n

−kλ4

RePr(γ − 1)
dx
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So we get our adjoint initial condition

λ|tf = 0 (A.30)

adjoint equation

−λ,t − Ai
T λxi

− M−T (−Di
T λxi

+ Ki
j
T
λxixj

) + r = 0 (A.31)

Next we will consider different control condition and application.

Blowing/suction on the adiabatic wall

Our control is Vn at the wall Γc, and the T,n = 0 at the wall Γc + Γs. So we have the

following constraints

V ′
n = 0 at Γs

V ′
s = 0 at Γc + Γs

∂Vn

∂s

′
= 0 at Γs

∂Vs

∂s

′
= 0 at Γc + Γs

∂T

∂n

′
= 0 at Γc + Γs
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and those terms will be unconstrained,

V ′
n at Γc

∂Vn

∂s

′
at Γc

∂Vn

∂n

′
at Γc + Γs

∂Vs

∂n

′
at Γc + Γs

ρ′ at Γc

T ′ at Γc + Γs

so we get

−µ

Re
(λs + Vsλ4)) = 0 at Γc

−(2µ + λ)
Re

(λn + Vnλ4)) = 0 at Γc + Γs

−µ

Re
(λs + Vsλ4)) = 0 at Γc + Γs

Vn(λ1 + Vsλs + Vnλn + λ4E) = 0 at Γc

Vn
ρλ4

γ(γ − 1)
+

κ

RePr(γ − 1)
∂λ4

∂n
= 0 at Γc

κ

RePr(γ − 1)
∂λ4

∂n
= 0 at Γs

here we exclude those terms V ′
n, which is related with the gradient equation.

The adjoint boundary conditions at the solid wall Γs become

λs + Vsλ4 = 0

λn + Vnλ4 = 0

λn = 0

∂λ4

∂n
= 0 at Γs
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At the control boundary Γc,

λs + Vsλ4 = 0

λn + Vnλ4 = 0

(λ1 + Vsλs + Vnλn + λ4E) = 0

Vn
ρλ4

γ
+

κ

RePr
∂λ4

∂n
= 0 at Γc

With all those V ′
n plus from the J ′, we get our gradient equation

∇J =
α3

2
g

+(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρV 2
n )λ4)

+
1
Re

(λ(
∂λs

∂s
− λn

R
+ Vs

∂λ4

∂s
) + (λ + 2µ)(

∂λn

∂n
+ Vn

∂λ4

∂n
) − τnnλ4)

+
1
Re

(
λ

R
(λn + Vnλ4))

=
α3

2
g

+(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρV 2
n )λ4)

+
1
Re

(λ(
∂λs

∂s
− λn

R
+ Vs

∂λ4

∂s
)

+(λ + 2µ)(
∂λn

∂n
+ Vn

∂λ4

∂n
) − τnnλ4) (A.32)

considering λ
R
(λn + Vnλ4) = 0 at Γc.
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Blowing/suction on the isothermal wall

Our control is Vn at the wall Γc, and the T = T0 at the wall Γc + Γs. So we have the

following constraints

V ′
n = 0 at Γs

V ′
s = 0 at Γc + Γs

∂Vn

∂s

′
= 0 at Γs

∂Vs

∂s

′
= 0 at Γc + Γs

T ′ = 0 at Γc + Γs

and those terms will be unconstrained,

V ′
n at Γc

∂Vn

∂s

′
at Γc

∂Vn

∂n

′
at Γc + Γs

∂Vs

∂n

′
at Γc + Γs

ρ′ at Γc

∂T

∂n

′
at Γc + Γs
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so we get

−µ

Re
(λs + Vsλ4)) = 0 at Γc

−(µ + λ)
Re

(λn + Vnλ4)) = 0 at Γc + Γs

−µ

Re
(λs + Vsλ4)) = 0 at Γc + Γs

Vn(λ1 + Vsλs + Vnλn + λ4E) = 0 at Γc

Vn
ρλ4

γ(γ − 1)
+ (λn + Vnλ4)

ρ

γ
+

κ

RePr(γ − 1)
∂λ4

∂n
= 0 at Γc

κ

RePr(γ − 1)
∂λ4

∂n
+

ρ

γ
λn = 0 at Γs

−κλ4

RePr(γ − 1)
= 0 at Γs + Γc

here we exclude those terms V ′
n, which will be come our gradient.

Eventually we get our adjoint boundary conditions, at the solid wall Γs

λs + Vsλ4 = 0

λn + Vnλ4 = 0

λ4 = 0 at Γs

at the control boundary Γc

λs + Vsλ4 = 0

λn + Vnλ4 = 0

(λ1 + Vsλs + Vnλn + λ4E) = 0

λ4 = 0 at Γc
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With all those V ′
n plus from the J ′, we get our gradient equation

∇J =
α3

2
g

+(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρV 2
n )λ4)

+
1
Re

(λ(
∂λs

∂s
− λn

R
+ Vs

∂λ4

∂s
) + (λ + 2µ)(

∂λn

∂n
+ Vn

∂λ4

∂n
) − τnnλ4)

+
1
Re

(
λ

R
(λn + Vnλ4))

=
α3

2
g

+(ρλ1 + ρVsλs + 2ρVnλn + (p + ρE + ρV 2
n )λ4)

+
1
Re

(λ(
∂λs

∂s
− λn

R
+ Vs

∂λ4

∂s
) + (λ + 2µ)(

∂λn

∂n
+ Vn

∂λ4

∂n
) − τnnλ4)

=
α3

2
g

+
2µ + λ

Re
(
∂λn

∂n
+ Vn

∂λ4

∂n
) (A.33)

considering the adjoint boundary condition at Γc

λ1 = 0

λ2 = 0

λ3 = 0

λ4 = 0

∂λn

∂s
= 0

∂λs

∂s
= 0
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Isothermal slip wall

Compared with the isothermal nonslip wall, we will have one more unconstraints Vs.

T = T0 at the wall Γs. So we have the following constraints

V ′
n = 0 at Γs

∂Vn

∂s

′
= 0 at Γs

T ′ = 0 at Γs

and those terms will be unconstrained,

Vs
′ at Γs

∂Vn

∂n

′
at Γs

∂Vs

∂n

′
at Γs

∂Vs

∂s

′
at Γs

ρ′ at Γs

∂T

∂n

′
at Γs
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so we get

(ρλ4VsVn + ρVnλs) +
1

Re
µ(

∂λn

∂s
+

∂λs

∂n
+

λs

R

+Vn
∂λ4

∂s
+ Vs

∂λ4

∂n
− τsn

µ
λ4) +

1
Re

−µ

R
(λs + Vsλ4)) = 0 at Γs

−(2µ + λ)
Re

(λn + Vnλ4)) = 0 at Γs

−λ

Re
(λn + Vnλ4)) = 0 at Γs

−µ

Re
(λs + Vsλ4)) = 0 at Γs

Vn(λ1 + Vsλs + Vnλn + λ4E) = 0 at Γs

−κλ4

RePr(γ − 1)
= 0 at Γs

Eventually we get our adjoint boundary conditions, at the solid wall Γs

λs + Vsλ4 = 0

λn + Vnλ4 = 0

λ4 = 0 at Γs

After simplifying, we get

λ2 = 0

λ3 = 0

λ4 = 0 at Γs
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Iso-flux slip wall

Compared with the iso-flux nonslip wall, we will have one more unconstraints Vs.

T,n = 0 at the wall Γs. So we have the following constraints

V ′
n = 0 at Γs

∂Vn

∂s

′
= 0 at Γs

∂T

∂n

′
= 0 at Γs

and those terms will be unconstrained,

Vs
′ at Γs

∂Vn

∂n

′
at Γs

∂Vs

∂n

′
at Γs

∂Vs

∂s

′
at Γs

ρ′ at Γs

T ′ at Γs
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so we get

(ρλ4VsVn + ρVnλs) +
1

Re
µ(

∂λn

∂s
+

∂λs

∂n
+

λs

R

+Vn
∂λ4

∂s
+ Vs

∂λ4

∂n
− τsn

µ
λ4) +

1
Re

−µ

R
(λs + Vsλ4)) = 0 at Γs

−(2µ + λ)
Re

(λn + Vnλ4)) = 0 at Γs

−λ

Re
(λn + Vnλ4)) = 0 at Γs

−µ

Re
(λs + Vsλ4)) = 0 at Γs

Vn(λ1 + Vsλs + Vnλn + λ4E) = 0 at Γs

Vn
ρλ4

γ(γ − 1)
+

κ

RePr(γ − 1)
∂λ4

∂n
= 0 at Γs

In short, the adjoint boundary conditions, at the solid wall Γs

λs + Vsλ4 = 0

λn + Vnλ4 = 0

∂λ4

∂n
= 0

∂λs

∂n
− λ4(

τnn

µ
+

Vs

R
) = 0 at Γs

Considering

∂λs

∂n
= −∂Vsλ4

∂n
= −λ4

∂Vs

∂n
− Vs

∂λ4

∂n
= −λ4

∂Vs

∂n

and
∂λs

∂n
− λ4(

τnn

µ
+

Vs

R
) = −λ4(

∂Vs

∂n
+

τnn

µ
+

Vs

R
) = 0

we can see λ4 = 0 at the Γs
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So the final adjoint boundary condition for the iso-flux slip wall is

λ2 = 0

λ3 = 0

λ4 = 0

∂λ4

∂n
= 0 at Γs

A.1.3 Adjoint Far Field Boundary

For the adjoint far field boundary, it is related with this term
∫ tf

t0

∫
Γ∞(niFi

T ′
)λdx. To

be easy, in the implementation, we are using the following adjoint boundary condition

for the far field, i.e. zero fluctuation, zero traction in the far field.

λ1 = 0 λ1,x = 0 λ1,y = 0

λ2 = 0 λ2,x = 0 λ2,y = 0

λ3 = 0 λ3,x = 0 λ3,y = 0

λ4 = 0 λ4,x = 0 λ4,y = 0





Appendix B

Spatial Discretization of Adjoint

Navier-Stokes Equations

B.1 Transformation of the Adjoint Equations

For the discontinuous Galerkin(DG) discretization, the adjoint equation(A.31) needs

to be transformed into the conservative(flux) form. Since the state solution variable

is the conservative variable U, the adjoint equation(A.31) is transformed into the

conservative form with all coefficient matrix from U.

Here is the adjoint equation for the Navier–Stokes equations based on the variation

of primitive u from (A.31).

−λ,t − Ai
T λxi

− M−T (−Di
T λxi

+ (Ki
j
T
λxi

)xj
) + Sp = 0 (B.1)

where

M =
∂U
∂u

Ai =
∂F
∂U

Di =
∂Fv

i

∂u
Ki

j =
∂Fv

i

∂uxj

On the other hand, the adjoint equation can also be written based on the conser-

vative U. Its derivation is very similar to the procedures in A.

−λ,t − Ai
T λxi

− (−D̂T
i λxi

+ (K̂i
j
T λxi

)xj
) + Sc = 0 (B.2)

where

Ai =
∂F
∂U

, D̂i =
∂Fv

i

∂U
, K̂i

j =
∂Fv

i

∂Uxj

177
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Through the simple derivation, we can show that the two forms of (B.1) and (B.2)

are equivalent.

For equation (B.1), it can be transformed to

−λ,t − Ai
T λxi

− M−T (−Di
T λxi

+ (Ki
j
T
λxi

)xj
) + Sp

= −λ,t − Ai
T λxi

+ (DiM−1)T λxi
− ((Ki

jM
−1)T λxi

)xj
+ M−T

xj
Ki

j
T
λxi

+ Sp

= −λ,t − Ai
T λxi

+ (DiM−1 + Ki
jM

−1
xj

)T λxi
− ((Ki

jM
−1)T λxi

)xj
+ Sp (B.3)

Comparing (B.2) and (B.3),

DiM−1 + Ki
jM

−1
xj

=
∂Fv

i

∂u

∂u

∂U
+

∂Fv
i

∂ux1

(
∂u

∂U
)x1 +

∂Fv
i

∂ux2

(
∂u

∂U
)x2

=
∂Fv

i

∂u

∂u

∂U
+

∂Fv
i

∂ux1

∂ux1

∂U
+

∂Fv
i

∂ux2

∂ux2

∂U

=
∂Fv

i

∂U
(B.4)

where we are using
∂Fv

i

∂uxi

(
∂u

∂U
)xi

=
∂Fv

i

∂uxi

∂uxi

∂U

For the other terms

Ki
jM

−1 =
∂Fv

i

∂uxj

∂u

∂U

=
∂Fv

i

∂uxk

∂uxk

∂Uxj

+
∂Fv

i

∂u

∂u

∂Uxj

=
∂Fv

i

∂Uxj

= K̂i
j (B.5)
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where we are using

∂u

∂U
=

∂uxi

∂Uxi

no Einstein rule

∂uxj

∂Uxi

= 0 i �= j

∂u

∂Uxi

= 0

It indicates that both equation (B.1) and (B.2) are consistent. Since then, we will

focus on the equation (B.2) and transform it into the conservative (flux) form.

−λ,t − Ai
T λxi

− (−D̂T
i λxi

+ (K̂i
j

T
λxi

)xj
) + Sc

= −λ,t − (Ai
T λ)xi

+ Ai
T

xi
λ + (D̂T

i λ)xi
− D̂T

i xi
λ − (K̂j

i

T
λxj

)xi
+ Sc

= 0 (B.6)

Write it in the following form

λ,t + (Ai
T λ)xi

− (D̂T
i λ)xi

+ (K̂j
i

T
λxj

)xi
= Ai

T
xi

λ − D̂T
i xi

λ + Sc (B.7)

Combined with the adjoint initial condition, adjoint boundary defined in A.1.2,

the whole adjoint system is obtained.

B.1.1 Spatial Discretization in DG

For the equation (B.7), there are four terms, adjoint convection term (Ai
T λ)xi

, which

can be solved using the general Riemann approximate solver, (D̂T
i λ)xi

which is called

adjoint viscous convection term, is discretized using the central flux, since the eigen-

values of coefficient matrix D̂T
i is very difficult to evaluate. The third term (K̂j

i

T
λxj

)xi
,

which is called adjoint diffusion term, is discretized using the Bassi-Rebay flux formu-

lation (3.7), (3.9). The procedure is very similar to that for the discretization of the

diffusion term in the state solver. The last term Ai
T

xi
λ − D̂T

i xi
λ + Sc is our source
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term. As to our temporal integration, it is discretized with the explicit Runge-Kutta

4 method as discussed in [54].

Here we discretize (B.7) based on the discontinuous Galerkin formulations. For

this equation, the adjoint convective, adjoint viscous convective and adjoint diffusion

flux vectors in the ith coordinate direction are Ai
T λ, D̂T

i λ, and K̂j
i

T
λxj

. Ai
T

xi
λ −

D̂T
i xi

λ + Sc is a source term. Equation (B.7) is solved subject to appropriate adjoint

boundary conditions.

Define
Fa

i = Ai
T λ

Ga
i = D̂T

i λ
,

Gav
i = K̂j

i

T
λxj

S̃ = Ai
T

xi
λ − D̂T

i xi
λ + S

(B.7) becomes

λ,t + (Fa
i )xi

− (Ga
i )xi

+ (Gav
i )xi

= S̃ (B.8)

Similar to the state discretizations in 3.2, the weak form of (B.8) is

∫

Ωe

(
W T λ,t + W T

,i (G
a
i − Gav

i − Fa
i )
)

dx +
∫

∂Ωe

W T (Fa
n + Gav

n − Ga
n) ds

=
∫

Ωe

W T S̃ ds (B.9)

Introducing numerical fluxes and summing over all elements yields the similar

formulation as (3.3),

N∑

e=1

∫

∂Ωe

W T
(
F̂a

n(λ−, λ+) + Ĝ
av

n (λ−, ∇λ−, λ+, ∇λ+) − Ĝ
a

n(λ−, λ+)
)

ds

+
N∑

e=1

∫

Ωe

(
W T λ,t + W T

,i(G
a
i − Gav

i − Fa
i )
)

dx =
N∑

e=1

∫

Ωe

W T S̃ ds (B.10)

For the adjoint convective flux F̂a
n(λ−, λ+), we use a Lax–Friedrichs method (3.6)

F̂a
n(λ−, λ+) =

1
2
(
Fa

n(λ−) + Fa
n(λ+) − λm

(
λ− − λ+)) (B.11)
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where λm is the maximum, in absolute value, of the eigenvalues of the Euler Jacobian

An = ∂Fn/∂U from the state.

For the adjoint viscous convective flux Ĝ
a

n(λ−, λ+), we use a central flux because

of the complexity of D̂T
i

Ĝ
a

n(λ−, λ+) =
1
2
(
Ga

n(λ−) + Ga
n(λ+)

)
(B.12)

For the numerical adjoint diffusion flux Ĝ
av

n (λ−, ∇λ−, λ+, ∇λ+), we use the Bassi–

Rebay flux, which is very similar to (3.7) and (3.9).





Appendix C

Optimal Control of Burgers Equation

In this chapter, results for Burgers equations using both distributed and boundary

control (Dirichlet and Neumann) are presented to validate our approach.The nu-

merical solution of optimal control problems governed by the unsteady compressible

Navier–Stokes equations is a challenging problem that requires careful mathematical

formulation, accurate state solution, efficient gradient computation, and convergent

optimization algorithms. As a simplified model of the Navier–Stokes (NS) equation,

the one-dimensional Burgers equation represents many of the properties of NS equa-

tions, such as nonlinear convection and viscous diffusion leading to shock waves and

boundary layers. Given this, the viscous Burgers equation has received significant

attention [19, 23, 69] and recent research has focused on the control of Burgers flow

as a model for control of Navier–Stokes flows [11, 23]. To meet the challenges associ-

ated with optimal control of unsteady flow, we have developed a new computational

framework based on the discontinuous Galerkin method (DGM) that allows for spec-

tral accuracy on unstructured grids with the ability to use local hp-refinement. These

capabilities will be of particular importance for large-scale optimal control for com-

plex fluid flows such as those encountered in aeroacoustic applications. This paper

presents our efforts in this direction by applying DGM to the solution of optimal con-

trol problems for flows governed by the viscous Burgers equation Since the number

of control variables is large in the problems that we target, an adjoint equation is

utilized to efficiently evaluate the gradient of the objective functional with-respect-to

the control. In general, there are two approaches to adjoint-based gradient evalu-

ation: the optimize-then-discretize approach and discretize-then-optimize approach.

183
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One of the goals of our research is to evaluate and compare these two approaches

for formulating and solving optimal control problems using DGM. In this chapter,

we focus on the optimize-then-discretize approach by presenting a discussion of the

problem formulation, implementation, and results.

C.1 Problem Formulation

C.1.1 Governing Equations

The Burgers equation is given by

∂u

∂t
+

1
2

∂u2

∂x
− ν

∂2u

∂x2 = f + Φ (C.1)

with boundary conditions

u(0, t) = φL

µu,n(L, t) + βu�n = φR (C.2)

and initial condition

u(x, 0) = u0(x) (C.3)

in which Φ is the distributed control, and φL and φR are the boundary controls, with

the spatial domain Ω = [0, L]. Here, we set the source term, f = 0. With β = 0, we

will get the Neumann boundary control.
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C.1.2 Objective Functional

For the Burgers control problems in this paper, the objective functional is defined as

J =
�

2

∫ t0+T

t0

∫ L

0
Φ2dxdt +

�1

2

∫ t0+T

t0

φ2
Ldt

+
�2

2

∫ t0+T

t0

φ2
Rdt +

ω1

2

∫ t0+T

t0

∫ L

0
(u − ũ)2dxdt

+
ω2

2

∫ L

0
[u(x, tf ) − ū(x)]2 dx. (C.4)

where ũ and ū are the distributed and terminal target states, respectively.

C.1.3 Optimality Equations

First, we form a L2-inner product by introducing an adjoint variable λ as

〈Nu, λ〉 =
∫ t0+T

t0

∫ L

0

(
∂u
∂t

+ 1
2

∂u2

∂x
− ν ∂2u

∂x2 − Φ
)

λ dx dt , (C.5)

where Nu = 0 denotes the Burgers equation (C.1).

Computing the variation of (C.5) with respect to the state variable u, and inte-

grating by parts yields

〈u′, N ∗λ〉 =
∫ L

0
u′λ

∣
∣
∣
∣
tf

dx +
∫ t0+T

t0

uλu′
∣
∣
∣
∣

L

0

dt

−
∫ t0+T

t0

ν λ
∂u′

∂x

∣
∣
∣
∣

L

0
dt +

∫ t0+T

t0

ν
∂λ

∂x
u′
∣
∣
∣
∣

L

0
dt

−
∫ t0+T

t0

∫ L

0
λΦ′dxdt , (C.6)

where N ∗ denotes the adjoint operator, defined as

N ∗λ = −∂λ

∂t
− u

∂λ

∂x
− ν

∂2λ

∂x
. (C.7)
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The variation of the objective functional (C.4) with respect to the control is

J ′ = �

∫ t0+T

t0

∫ L

0
ΦΦ′ dx dt

+ �1

∫ t0+T

t0

φLφ′
L dt + �2

∫ t0+T

t0

φRφ′
R dt

+ ω1

∫ t0+T

t0

∫ L

0
(u − ũ)u′ dx dt

+ ω2

∫ L

0
(utf − ū)u′

tf
dx . (C.8)

According to the theory of Lagrange multipliers,

J ′ − 〈Nu, λ〉′ = 0

gives the adjoint equation

−∂λ

∂t
− u

∂λ

∂x
− ν

∂2λ

∂x
= ω1(u − ũ) (C.9)

with the boundary conditions

λ(0, t) = 0

uλ(L, t) + νλ,x(L, t) = 0 (C.10)

and end condition

λ(x, tf ) = ω2(u(x, tf) − ū(x)) . (C.11)

The optimality conditions are the state-equation (C.1) with boundary conditions

(C.2) and initial condition (C.3), the adjoint equation (C.9) with boundary conditions
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(C.10) and end condition (C.11) and the gradient equations, given by

∇ΦJ = lΦ + λ,

∇φL
J = l1φL + ν

∂λ

∂x

∣
∣
∣
∣
x=0

,

∇φR
J = l2φR + νλx=L .

Solution of the optimality equations yields the gradient of the objective functional

with respect to the control which should be equal to zero at the optimum. We use

a nonlinear conjugate gradient method to solve this optimization problem and more

details regarding optimal control of Burgers flows can be found in [20].

C.2 Numerical Method

The optimality equations are discretized with a discontinuous Galerkin method in

space and fourth-order accurate Runge-Kutta time-integration.

C.2.1 Spatial Discretization

We denote the boundary of the domain Ω as ∂Ω = ΓD ∪ ΓN where ΓD is the portion

of the boundary where Dirichlet conditions are specified and ΓN is the portion of the

boundary where Neumann conditions are set. The spatial domain Ω is partitioned

into a set of non-overlapping elements Ωe that each have a Lipschitz boundary ∂Ωe.

The element boundary is denoted as Γ = {ΓD, ΓN , Γ0} where Γ0 are the inter-element

boundaries. Let Ω1 and Ω2 be two adjacent elements; let Γ12 = ∂Ω1 ∩ ∂Ω2; and let

n(1) and n(2) be the corresponding outward unit normal vectors at that point.

Let u(e) and F (e) be the trace of a state u and flux vector F , respectively, on Γ12

from the interior of sub-domain Ωe. Then, we define the average 〈 · 〉 and jump [·]
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operators on Γ12 as

[u] = u(1)n(1) + u(2)n(2) (C.12a)

[Fn] = F (1)n(1) + F (2)n(2), (C.12b)

〈u〉 =
1
2
(
u(1) + u(2)) , (C.12c)

〈F 〉 =
1
2
(
F (1) + F (2)) , (C.12d)

where Fn = Fn and n = −1 on a left boundary and n = 1 on a right boundary.

Defining the convective and viscous fluxes as

F =
u2

2
, F v = νu,x ,

the discontinuous Galerkin formulation for the Burgers equation is

∑

e

∫

Ωe

{
w(u,t − Φ) + w,x(F v − F )

}
dΩ −

∫

Γ0

[wn]
〈
F̂ v − F

〉
dΓ −

∫

Γ0

〈νw,x〉 [n(û − u)] dΓ

−
∫

ΓD

(νw,n)(u − φL) + w
(
F v

n − F̂ v
n(u, φL)

)
dΓ

−
∫

ΓN

w(νφR − F̂ v
n (u, u)) dΓ = 0 (C.13)

where F̂ , F̂ v and û are numerical fluxes. For the convective numerical inviscid flux,

we use the Lax-Friedrichs flux [24], which can be expressed as

F̂ (u−, u+) =
1
2
[
F (u−) + F (u+) + λm(u− − u+)

]

where λm = |∂F/∂u|. For the numerical viscous flux, F̂ v, and solution flux, û, we use

the Bassi-Rebay method [8,9]. All boundary conditions are enforced weakly through

the numerical fluxes and additional details regarding weak boundary condition en-

forcement can be found in [31, 32]
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The DGM discretization for the adjoint equation (C.9) is similar to that of state

(C.13),

∑

e

∫

Ωe

{
w (λ,t − λu,x + ω1(u − ũ)) −

w,x(Gv + G)
}
dΩ +

∫

Γ0

[wn]
〈
Ĝv + G

〉
dΓ +

∫

Γ0

〈νw,x〉
[
n(λ̂ − λ)

]
dΓ

−
∫

ΓD

{
νw,nλ − w

(
Gv

n − Ĝv
n(λ, 0)

)}
dΓ

+
∫

ΓN

w(−uλ − Ĝv
n(λ, λ)) dΓ = 0 (C.14)

where G ≡ uλ and Gv ≡ νλ,x. Similar to the state discretization, we use the Lax–

Freidrichs and Bassi–Rebay numerical fluxes and the adjoint boundary conditions

(C.10) are applied in evaluating the numerical fluxes on the domain boundary.

C.2.2 Temporal Discretization

A fourth-order accurate explicit Runge-Kutta method is used, which is symmetric

and therefore well-suited for optimal control problems [54].

C.3 Results

The following results all use the continuous adjoint approach presented above. For

all cases, the initial condition is the same as that in Chang’s Ph.D. thesis [20] and is

given by

u0(x) = sin (mπ tan(cs(2x − 1)) / tan(cs) (C.15)

where cs is a parameter that controls the stretching of the initial profile. This initial

profile can lead to boundary layers near the domain ends. We choose cs = 1.3. Our

space and time domain are 0 ≤ x ≤ 1 and 0 ≤ t ≤ 1, respectively. The viscosity
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for all cases is ν = 0.01. For spatial discretization, the domain is divided into 40

equally sized elements. Unless otherwise specified, fourth-order (p = 4) polynomial

representations are used on each element and the time-step is ∆t = 0.00025.

C.3.1 Distributed Control

The first test case corresponds to that done in Ref. [20] and is used to validate our

implementation. The control objective is to sustain the initial profile, so the objective

functional is defined as

J =
�

2

∫ 1

0

∫ 1

0
Φ2dxdt

+
1
2
ω1

∫ 1

0

∫ 1

0
(u − u0)

2 dxdt

+
1
2
ω2

∫ 1

0
[u(x, 1) − u0]

2 dx. (C.16)

In our simulations, ω1 = 1, ω2 = 1, and � = 0.01.

Figure C.1 shows that as the number of optimization iterations increases, the

state solution at t = tf = 1 becomes closer and closer to the target solution. The

distributed optimal control profile, Φ(x), is shown in Fig. C.2 after four optimization

iterations which demonstrates that the control has boundary layers near the left and

right boundaries and that the control changes in time in order to drive the solution

toward the target state.

The evolution of the objective function, J , as the number of optimization iterations

increases is shown in Fig. C.3. From this figure, we see that the objective functional

drops to a value of 8×10−3 with no significant decrease in J beyond about 3 iterations

which is consistent with prior results [20]. Taking advantage of the ability to perform

p-refinement in DGM, Fig. C.3 also shows results for both p = 2 and p = 6. Overall

the optimal-control solutions are similar for all values of p which indicates that this
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Figure C.1: Distributed control of Burgers equation for p = 4: initial profile;
the profile without control at t = 1; profile with control at t = 1 after first

iteration; profile with control at t = 1 after second iteration; profile with
control t = 1 after third iteration.
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Figure C.2: Distributed control profile after fourth iteration at t = 0.2, 0.4, 0.6, and
0.8.
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Figure C.3: Objective functional, J , at different iterations for distributed control:
p = 2; � p = 4; � p = 6.

distributed control problem is well resolved, even at p = 2.

C.3.2 Boundary Control

In order to validate our implementation for boundary control, we formulate our test

cases as inverse problems. Given a specified boundary condition, the corresponding

state solutions are first obtained, which then become our objective solution ũ. Using

this as our objective solution in the objective functional, we then solve the opti-

mal control problem and compare the computed boundary values to the boundary

condition that was originally prescribed.

Dirichlet Boundary Control

The initial condition is the same as that used for distributed control. Our control

objective is to achieve the objective solution ũ, which is obtained using the prescribed
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boundary condition φ∗
L = 2t2. Thus, the objective functional is

J =
�1

2

∫ 1

0
φ2

Ldt

+
ω1

2

∫ 1

0

∫ 1

0
(u − ũ)2dxdt

+
1
2
ω2

∫ 1

0
[u(x, tf ) − ũ(x, tf)]

2 dx (C.17)

where ω1 = 1000, ω2 = 1, and �1 = 0.001. The initial guess for the boundary control

is φL = 2tf t so that the final boundary condition is satisfied at t = 0.

Comparing the target state and the optimal state solutions after 24 iterations (see

Fig. C.5) shows that the agreement is excellent. It is also shown in Fig. C.6 that the

control converges to the target boundary condition φ∗
L = 2t2. This can be seen more

clearly in Fig. C.7 which shows the error in the computed control compared to the

target boundary condition.

Figure C.8 presents the evolution of the objective functional showing that the

value converges after about 20 optimization iterations for p = 4. Also shown in

Fig. C.8 are convergence histories for other values of p. Improving resolution does

appear to lead to a slightly smaller value of J although convergence is slightly slower

for larger p.

Neumann Boundary Control

We now consider Neumann boundary control where the control variable is φR at

x = 1. Our control objective is to sustain the target solution ũ obtained using the

prescribed boundary condition φ∗
R = −31.52(1 − 2

√
t). The objective functional for
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Figure C.4: State solution with prescribed Dirichlet boundary condition φ∗
L = 2t2

for p = 4: initial profile; the profile at t = 0.2; profile at t = 0.4;
profile at t = 0.6; profile at t = 0.8; profile at t = 1.
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Figure C.5: Final optimal state solution using Dirichlet boundary control for p = 4:
initial profile; the profile at t = 0.2; profile at t = 0.4; profile

at t = 0.6; profile at t = 0.8; profile at t = 1.
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Figure C.6: Iteration history for Dirichlet optimal control with p = 4. The arrow
shows the direction of increasing optimization iterations.
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Figure C.7: Iteration history for the error in the Dirichlet optimal control with
p = 4. The arrow shows the direction of increasing optimization iterations.
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Figure C.8: Evolution of the objective functional, J , for Dirichlet control, p = 2;
• p = 4; � p = 6; ∇ p = 7.

this problem is defined as

J =
�2

2

∫ 1

0
φ2

Rdt

+
ω1

2

∫ 1

0

∫ 1

0
(u − ũ)2dxdt

+
1
2
ω2

∫ 1

0
[u(x, tf) − ũ(x, tf)]

2 dx (C.18)

where ω1 = 100, 000, ω2 = 1, and �2 = 1 × 10−7. The initial control is the linear

distribution φR = −31.52(1 − 2
√

tf )t/tf .

After several iterations, the optimal solution becomes almost identical to the target

solution as seen by comparing the target solution (Fig. C.9) with the final optimal

state solution after 24 optimization iterations (Fig. C.10).

Good convergence is also obtained in the control profiles (Fig. C.11), however, by

plotting the difference between the optimal control and the target control (Fig. C.12)

we see that even after 24 iterations there are noticeable differences between the two,

especially for early times. These differences are larger than those encountered for
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Figure C.9: State solution with prescribed Neumann boundary condition φ∗
R =

−31.52(1 − 2
√

t) using p = 4: initial profile; the profile at t = 0.25;
profile at t = 0.5; profile at t = 0.75; profile at t = 1.
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Figure C.10: Final optimal state solution for Neumann boundary control using
p = 4: initial profile; the profile at t = 0.25; profile at t = 0.5;
profile at t = 0.75; profile at t = 1.
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Figure C.11: Iteration history for Neumann optimal control using p = 4. The arrow
shows the direction of increasing optimization iterations.
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Figure C.12: Iteration history for the error in the Neumann optimal control for
p = 4. The arrow shows the direction of increasing optimization iterations.
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Figure C.13: Evolution of the objective functional, J , for optimal Neumann bound-
ary control: p = 2; • p = 4; � p = 6; ∇ p = 7.

Dirichlet control. Figure C.13 shows the convergence history for the objective func-

tion, J , for both p = 4 as well as other values of p. Increases in p beyond a value

of 4 do not lead to a significant change in the optimal solution. It is important to

remember that a gradient-based optimization algorithm only finds local minima —

there is no guarantee that the global minima will be found. Thus it is possible that

the current results are at a local optimum which would explain why we are not able

to exactly recover the prescribed control profile for this inverse problem.

To determine whether an improved optimal solution can be obtained for this

problem, we considered two additional initial guesses for the control profile. First,

we added very small perturbations to the target control profile so that the initial

control profile took the form φR = −31.52(1 − 2
√

t) + ε. In this case the optimal

control quickly converged to the target control. Next, we tried an initial control

that contained a finite-amplitude oscillation about the target control, i.e. φR =

−31.52(1 − 2
√

t) + 30t(1 − t). With this starting profile, Figs. C.14 and C.15 show

that after several iterations, the optimal control almost recovers the target control

profile. This is also seen in Fig. C.16 which compares the evolution of J given two
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Figure C.14: Iteration history for Neumann boundary control starting from initial
control φR = −31.52(1 − 2

√
t) + 30t(1 − t) and using p = 6. The arrow shows the

direction of increasing optimization iterations.

different initial control distributions. Clearly, these two cases lead to a more optimal

solution confirming the fact that the first case was a local minimum.

C.3.3 Summary of Burgers Control

In the prior sections we have described our continuous adjoint formulation and imple-

mentation for optimal control of problems governed by the unsteady Burgers equa-

tion where both the state and adjoint equations are discretized using discontinuous

Galerkin in space. Results were presented for distributed control as well as both

Dirichlet and Neumann boundary control and, in all cases, reductions in the objec-

tive function of at least one order of magnitude (or more) were obtained with a modest

number (less than 6) of optimization iterations. Similar reductions in the gradient

of the objective function (not shown here, but see Fig. 6.13 for similar results for

Navier–Stokes flows) are also obtained indicating that our solutions are indeed ap-

proaching optimality. These results for Burgers control give us confidence in both

our formulation and implementation of the continuous adjoint equation, boundary
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Figure C.15: Iteration history for the error in the Neumann boundary control start-
ing from initial control φR = −31.52(1 − 2

√
t) + 30t(tf − t) and using p = 6. The

arrow shows the direction of increasing optimization iterations.
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Figure C.16: Comparison of objective functionals J for Neumann control with
different initial control profiles using p = 6: initial control profile φR = −31.52(1 −
2
√

tf t/tf ); • initial control profile φR = −31.52(1 − 2
√

t) + 30t(tf − t).
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conditions, and gradient evaluation.
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